Skip to main content

Invention and Early History of Exon Skipping and Splice Modulation

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1828))

Abstract

Since its discovery in 1977, much has been known about RNA splicing and how it plays a central role in human development, function, and, notably, disease. Defects in RNA splicing account for at least 10% of all genetic disorders, with the number expected to increase as more information is uncovered on the contribution of noncoding genomic regions to disease. Splice modulation through the use of antisense oligonucleotides (AOs) has emerged as a promising avenue for the treatment of these disorders. In fact, two splice-switching AOs have recently obtained approval from the US Food and Drug Administration: eteplirsen (Exondys 51) for Duchenne muscular dystrophy, and nusinersen (Spinraza) for spinal muscular atrophy. These work by exon skipping and exon inclusion, respectively. In this chapter, we discuss the early development of AO-based splice modulation therapy—its invention, first applications, and its evolution into the approach we are now familiar with. We give a more extensive history of exon skipping in particular, as it is the splice modulation approach given the most focus in this book.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Chow LT, Gelinas RE, Broker TR, Roberts RJ (1977) An amazing sequence arrangement at the 5′ ends of adenovirus 2 messenger RNA. Cell 12:1–8

    Article  CAS  PubMed  Google Scholar 

  2. Berget SM, Moore C, Sharp PA (1977) Spliced segments at the 5′ terminus of adenovirus 2 late mRNA. Proc Natl Acad Sci U S A 74:3171–3175. https://doi.org/10.1073/pnas.74.8.3171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74. https://doi.org/10.1038/nature11247

    Article  CAS  Google Scholar 

  4. Keren H, Lev-Maor G, Ast G (2010) Alternative splicing and evolution: diversification, exon definition and function. Nat Rev Genet 11:345–355. https://doi.org/10.1038/nrg2776

    Article  CAS  PubMed  Google Scholar 

  5. Wang ET, Sandberg R, Luo S et al (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456:470–476. https://doi.org/10.1038/nature07509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pan Q, Shai O, Lee LJ et al (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40:1413–1415. https://doi.org/10.1038/ng.259

    Article  CAS  PubMed  Google Scholar 

  7. Krawczak M, Thomas NST, Hundrieser B et al (2007) Single base-pair substitutions in exon-intron junctions of human genes: nature, distribution, and consequences for mRNA splicing. Hum Mutat 28:150–158. https://doi.org/10.1002/humu.20400

    Article  CAS  PubMed  Google Scholar 

  8. Douglas AGL, Wood MJA (2011) RNA splicing: disease and therapy. Brief Funct Genomics 10:151–164. https://doi.org/10.1093/bfgp/elr020

    Article  CAS  PubMed  Google Scholar 

  9. Hindorff LA, Sethupathy P, Junkins HA et al (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 106:9362–9367. https://doi.org/10.1073/pnas.0903103106

    Article  PubMed  PubMed Central  Google Scholar 

  10. López-Bigas N, Audit B, Ouzounis C et al (2005) Are splicing mutations the most frequent cause of hereditary disease? FEBS Lett 579:1900–1903. https://doi.org/10.1016/j.febslet.2005.02.047

    Article  CAS  PubMed  Google Scholar 

  11. Sazani P, Graziewicz M, Kole R (2007) Splice switching oligonucleotides as potential therapeutics. In: Antisense drug technol. CRC Press, Boca Raton, pp 89–114

    Chapter  Google Scholar 

  12. Alberts B, Johnson A, Lewis J et al (2008) Molecular biology of the cell. In: Garland science, 5th edn. Taylor & Francis Group, New York

    Google Scholar 

  13. Chen M, Manley JL (2009) Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nat Rev Mol Cell Biol 10:741–754. https://doi.org/10.1038/nrm2777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Scotti MM, Swanson MS (2016) RNA mis-splicing in disease. Nat Rev Genet 17:19–32. https://doi.org/10.1038/nrg.2015.3

    Article  CAS  PubMed  Google Scholar 

  15. Turunen JJ, Niemelä EH, Verma B, Frilander MJ (2013) The significant other: splicing by the minor spliceosome. Wiley Interdiscip Rev RNA 4:61–76. https://doi.org/10.1002/wrna.1141

    Article  CAS  PubMed  Google Scholar 

  16. Corvelo A, Hallegger M, Smith CWJ, Eyras E (2010) Genome-wide association between branch point properties and alternative splicing. PLoS Comput Biol 6:e1001016. https://doi.org/10.1371/journal.pcbi.1001016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schellenberg MJ, Ritchie DB, MacMillan AM (2008) Pre-mRNA splicing: a complex picture in higher definition. Trends Biochem Sci 33:243–246. https://doi.org/10.1016/j.tibs.2008.04.004

    Article  CAS  PubMed  Google Scholar 

  18. Coolidge CJ, Seely RJ, Patton JG (1997) Functional analysis of the polypyrimidine tract in pre-mRNA splicing. Nucleic Acids Res 25:888–896. https://doi.org/10.1093/nar/25.4.888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stephenson ML, Zamecnik PC (1978) Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc Natl Acad Sci U S A 75:285–288. https://doi.org/10.1073/pnas.75.1.285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zamecnik PC, Stephenson ML (1978) Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci U S A 75:280–284. https://doi.org/10.1073/pnas.75.1.280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Donis-Keller H (1979) Site specific enzymatic cleavage of RNA. Nucleic Acids Res 7:179–192. https://doi.org/10.1093/nar/7.1.179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Munroe SH (1988) Antisense RNA inhibits splicing of pre-mRNA in vitro. EMBO J 7:2523–2532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mayeda A, Hayase Y, Inoue H et al (1990) Surveying cis-acting sequences of pre-mRNA by adding antisense 2’-O-methyl oligoribonucleotides to a splicing reaction. J Biochem 108:399–405

    Article  CAS  PubMed  Google Scholar 

  24. Bobst AM, Cerutti PA, Rottman F (1969) Structure of poly(2’-O-methyladenylic acid) at acidic and neutral pH. J Am Chem Soc 91:1246–1248. https://doi.org/10.1021/ja01033a054

    Article  CAS  Google Scholar 

  25. Inoue H, Hayase Y, Imura A et al (1987) Synthesis and hybridization studies on two complementary nona(2’-O-methyl)ribonucleotides. Nucleic Acids Res 15:6131–6148. https://doi.org/10.1093/nar/15.15.6131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Inoue H, Hayase Y, Iwai S, Ohtsuka E (1987) Sequence-dependent hydrolysis of RNA using modified oligonucleotide splints and RNase H. Nucleic Acids Symp Ser 215:221–224. https://doi.org/10.1016/0014-5793(87)80171-0

    Article  Google Scholar 

  27. Dominski Z, Kole R (1993) Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc Natl Acad Sci U S A 90:8673–8677. https://doi.org/10.1021/ar00057a002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thein SL (2013) The molecular basis of b-thalassemia. Cold Spring Harb Perspect Med 3:a011700–a011700. https://doi.org/10.1101/cshperspect.a011700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Eckstein F (1966) Nucleoside phosphorothioates. J Am Chem Soc 88:4292–4294. https://doi.org/10.1021/ja00970a054

    Article  CAS  Google Scholar 

  30. Eckstein F (2000) Phosphorothioate oligodeoxynucleotides: what is their origin and what is unique about them? Antisense Nucleic Acid Drug Dev 10:117–121. https://doi.org/10.1089/oli.1.2000.10.117

    Article  CAS  PubMed  Google Scholar 

  31. Dowdy SF (2017) Overcoming cellular barriers for RNA therapeutics. Nat Biotechnol 35:222–229. https://doi.org/10.1038/nbt.3802

    Article  CAS  PubMed  Google Scholar 

  32. Miller PS, Yano J, Yano E et al (1979) Nonionic nucleic acid analogues. Synthesis and characterization of dideoxyribonucleoside methylphosphonates. Biochemistry 18:5134–5143

    Article  CAS  PubMed  Google Scholar 

  33. Sierakowska H, Sambade MJ, Agrawal S, Kole R (1996) Repair of thalassemic human beta-globin mRNA in mammalian cells by antisense oligonucleotides. Proc Natl Acad Sci U S A 93:12840–12844. https://doi.org/10.1073/pnas.93.23.12840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sierakowska H, Montague M, Agrawal S, Kole R (1997) Restoration of ß-globin gene expression in mammalian cells by antisense oligonucleotides that modify the aberrant splicing patierns of thalassemic pre-mRNAs. Nucleosides and Nucleotides 16:1173–1182. https://doi.org/10.1080/07328319708006154

    Article  CAS  Google Scholar 

  35. Friedman KJ, Kole J, Cohn JA et al (1999) Correction of aberrant splicing of the cystic fibrosis transmembrane conductance regulator ( CFTR ) gene by antisense oligonucleotides. J Biol Chem 274:36193–36199. https://doi.org/10.1074/jbc.274.51.36193

    Article  CAS  PubMed  Google Scholar 

  36. Scaffidi P, Misteli T (2005) Reversal of the cellular phenotype in the premature aging disease Hutchinson-Gilford progeria syndrome. Nat Med 11:440–445. https://doi.org/10.1038/nm1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vetrini F, Tammaro R, Bondanza S et al (2006) Aberrant splicing in the ocular albinism type 1 gene (OA1/GPR143) is corrected in vitro by morpholino antisense oligonucleotides. Hum Mutat 27:420–426. https://doi.org/10.1002/humu.20303

    Article  CAS  PubMed  Google Scholar 

  38. U.S. Food and Drug Administration (2016) FDA grants accelerated approval to first drug for Duchenne muscular dystrophy. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm521263.htm. Accessed 30 Aug 2017

  39. Emery AEH (1991) Population frequencies of inherited neuromuscular diseases-a world survey. Neuromuscul Disord 1:19–29

    Article  CAS  PubMed  Google Scholar 

  40. Mendell JR, Shilling C, Leslie ND et al (2012) Evidence-based path to newborn screening for Duchenne muscular dystrophy. Ann Neurol 71:304–313. https://doi.org/10.1002/ana.23528

    Article  CAS  PubMed  Google Scholar 

  41. Manzur A, Kinali M, Muntoni F (2008) Update on the management of Duchenne muscular dystrophy. Arch Dis Child 93:986–990. https://doi.org/10.1136/adc.2007.118141

    Article  CAS  PubMed  Google Scholar 

  42. Hoffman EP, Brown RH, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928. https://doi.org/10.1016/0092-8674(87)90579-4

    Article  CAS  PubMed  Google Scholar 

  43. Petrof BJ, Shrager JB, Stedman HH et al (1993) Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc Natl Acad Sci U S A 90:3710–3714. https://doi.org/10.1073/pnas.90.8.3710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Koenig M, Hoffman EP, Bertelson CJ et al (1987) Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50:509–517. https://doi.org/10.1016/0092-8674(87)90504-6

    Article  CAS  PubMed  Google Scholar 

  45. Roberts RG, Coffey AJ, Bobrow M, Bentley DR (1993) Exon structure of the human dystrophin gene. Genomics 16:536–538. https://doi.org/10.1006/geno.1993.1225

    Article  CAS  PubMed  Google Scholar 

  46. Monaco AP, Bertelson CJ, Liechti-Gallati S et al (1988) An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics 2:90–95. https://doi.org/10.1016/0888-7543(88)90113-9

    Article  CAS  PubMed  Google Scholar 

  47. Koenig M, Beggs AH, Moyer M et al (1989) The molecular basis for Duchenne versus Becker muscular dystrophy: correlation of severity with type of deletion. Am J Hum Genet 45:498–506 doi: 10.1016/1

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Matsuo M, Masumura T, Nakajima T et al (1990) A very small frame-shifting deletion within exon 19 of the Duchenne muscular dystrophy gene. Biochem Biophys Res Commun 170:963–967

    Article  CAS  PubMed  Google Scholar 

  49. Matsuo M, Masumura T, Nishio H et al (1991) Exon skipping during splicing of dystrophin mRNA precursor due to an intraexon deletion in the dystrophin gene of Duchenne muscular dystrophy Kobe. J Clin Invest 87:2127–2131. https://doi.org/10.1172/JCI115244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Takeshima Y, Nishio H, Sakamoto H et al (1995) Modulation of in vitro splicing of the upstream intron by modifying an intra-exon sequence which is deleted from the dystrophin gene in dystrophin Kobe. J Clin Invest 95:515–520. https://doi.org/10.1172/JCI117693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nicholson LVB, Davison K, Johnson MA et al (1989) Dystrophin in skeletal muscle II. Immunoreactivity in patients with Xp21 muscular dystrophy. J Neurol Sci 94:137–146. https://doi.org/10.1016/0022-510X(89)90224-4

    Article  CAS  PubMed  Google Scholar 

  52. Hoffman EP, Morgan JE, Watkins SC, Partridge TA (1990) Somatic reversion/suppression of the mouse mdx phenotype in vivo. J Neurol Sci 99:9–25. https://doi.org/10.1016/0022-510X(90)90195-S

    Article  CAS  PubMed  Google Scholar 

  53. Klein CJ, Coovert DD, Bulman DE et al (1992) Somatic reversion/suppression in Duchenne muscular dystrophy (DMD): evidence supporting a frame-restoring mechanism in rare dystrophin-positive fibers. Am J Hum Genet 50:950–959

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Thanh LT, Nguyen TM, Helliwell TR, Morris GE (1995) Characterization of revertant muscle fibers in Duchenne muscular dystrophy, using exon-specific monoclonal antibodies against dystrophin. Am J Hum Genet 56:725–731

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Echigoya Y, Lee J, Rodrigues M et al (2013) Mutation types and aging differently affect revertant fiber expansion in dystrophic mdx and Mdx52 mice. PLoS One 8:e69194. https://doi.org/10.1371/journal.pone.0069194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rodrigues M, Echigoya Y, Maruyama R et al (2016) Impaired regenerative capacity and lower revertant fibre expansion in dystrophin-deficient mdx muscles on DBA/2 background. Sci Rep 6:38371. https://doi.org/10.1038/srep38371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pramono ZA, Takeshima Y, Alimsardjono H et al (1996) Induction of exon skipping of the dystrophin transcript in lymphoblastoid cells by transfecting an antisense oligodeoxynucleotide complementary to an exon recognition sequence. Biochem Biophys Res Commun 226:445–449

    Article  CAS  PubMed  Google Scholar 

  58. Sicinski P, Geng Y, Ryder-Cook AS et al (1989) The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science 244:1578–1580

    Article  CAS  PubMed  Google Scholar 

  59. Dunckley MG, Manoharan M, Villiet P et al (1998) Modification of splicing in the dystrophin gene in cultured mdx muscle cells by antisense oligoribonucleotides. Hum Mol Genet 7:1083–1090

    Article  CAS  PubMed  Google Scholar 

  60. Wilton SD, Lloyd F, Carville K et al (1999) Specific removal of the nonsense mutation from the mdx dystrophin mRNA using antisense oligonucleotides. Neuromuscul Disord 9:330–338. https://doi.org/10.1016/S0960-8966(99)00010-3

    Article  CAS  PubMed  Google Scholar 

  61. van Deutekom JC, Bremmer-Bout M, Janson AA et al (2001) Antisense-induced exon skipping restores dystrophin expression in DMD patient derived muscle cells. Hum Mol Genet 10:1547–1554. https://doi.org/10.1093/HMG/10.15.1547

    Article  PubMed  Google Scholar 

  62. Takeshima Y, Wada H, Yagi M et al (2001) Oligonucleotides against a splicing enhancer sequence led to dystrophin production in muscle cells from a Duchenne muscular dystrophy patient. Brain and Development 23:788–790. https://doi.org/10.1016/S0387-7604(01)00326-6

    Article  CAS  PubMed  Google Scholar 

  63. Aartsma-Rus A, Janson AAM, Kaman WE et al (2003) Therapeutic antisense-induced exon skipping in cultured muscle cells from six different DMD patients. Hum Mol Genet 12:907–914

    Article  CAS  PubMed  Google Scholar 

  64. Aartsma-Rus A, Janson AA, Kaman WE et al (2004) Antisense-induced multiexon skipping for Duchenne muscular dystrophy makes more sense. Am J Hum Genet 74:83–92. https://doi.org/10.1086/381039

    Article  CAS  PubMed  Google Scholar 

  65. Aartsma-Rus A, Kaman WE, Bremmer-Bout M et al (2004) Comparative analysis of antisense oligonucleotide analogs for targeted DMD exon 46 skipping in muscle cells. Gene Ther 11:1391–1398. https://doi.org/10.1038/sj.gt.3302313

    Article  CAS  PubMed  Google Scholar 

  66. Surono A, Van Khanh T, Takeshima Y et al (2004) Chimeric RNA/ethylene-bridged nucleic acids promote dystrophin expression in myocytes of duchenne muscular dystrophy by inducing skipping of the nonsense mutation-encoding exon. Hum Gene Ther 15:749–757. https://doi.org/10.1089/1043034041648444

    Article  CAS  PubMed  Google Scholar 

  67. Aartsma-Rus A, Janson AAM, van Ommen G-JB, van Deutekom JCT (2007) Antisense-induced exon skipping for duplications in Duchenne muscular dystrophy. BMC Med Genet 8:43. https://doi.org/10.1186/1471-2350-8-43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mann CJ, Honeyman K, Cheng AJ et al (2001) Antisense-induced exon skipping and synthesis of dystrophin in the mdx mouse. Proc Natl Acad Sci U S A 98:42–47. https://doi.org/10.1073/pnas.011408598

    Article  CAS  PubMed  Google Scholar 

  69. Lu QL, Mann CJ, Lou F et al (2003) Functional amounts of dystrophin produced by skipping the mutated exon in the mdx dystrophic mouse. Nat Med 9:1009–1014. https://doi.org/10.1038/nm897

    Article  CAS  PubMed  Google Scholar 

  70. Summerton JE (2017) Invention and early history of morpholinos: from pipe dream to practical products. Methods Mol Biol 1565:1–15. https://doi.org/10.1007/978-1-4939-6817-6_1

    Article  CAS  PubMed  Google Scholar 

  71. Summerton J, Weller D (1997) Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev 7:187–195. https://doi.org/10.1089/oli.1.1997.7.187

    Article  CAS  PubMed  Google Scholar 

  72. Lee JJA, Yokota T (2013) Antisense therapy in neurology. J Pers Med 3:144–176. https://doi.org/10.3390/jpm3030144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Moulton JD (2016) Guide for morpholino users: toward therapeutics. J Drug Discov Dev Deliv 3:1023

    Google Scholar 

  74. Gebski BL, Mann CJ, Fletcher S, Wilton SD (2003) Morpholino antisense oligonucleotide induced dystrophin exon 23 skipping in mdx mouse muscle. Hum Mol Genet 12:1801–1811. https://doi.org/10.1093/hmg/ddg196

    Article  CAS  PubMed  Google Scholar 

  75. Schmajuk G, Sierakowska H, Kole R (1999) Antisense oligonucleotides with different backbones. Modification of splicing pathways and efficacy of uptake. J Biol Chem 274:21783–21789

    Article  CAS  PubMed  Google Scholar 

  76. Lacerra G, Sierakowska H, Carestia C et al (2000) Restoration of hemoglobin a synthesis in erythroid cells from peripheral blood of thalassemic patients. Proc Natl Acad Sci 97:9591–9596. https://doi.org/10.1073/pnas.97.17.9591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Suwanmanee T, Sierakowska H, Lacerra G et al (2002) Restoration of human beta-globin gene expression in murine and human IVS2-654 thalassemic erythroid cells by free uptake of antisense oligonucleotides. Mol Pharmacol 62:545–553

    Article  CAS  PubMed  Google Scholar 

  78. Suwanmanee T, Sierakowska H, Fucharoen S, Kole R (2002) Repair of a splicing defect in erythroid cells from patients with beta-thalassemia/HbE disorder. Mol Ther 6:718–726

    Article  CAS  PubMed  Google Scholar 

  79. Wells KE, Fletcher S, Mann CJ et al (2003) Enhanced in vivo delivery of antisense oligonucleotides to restore dystrophin expression in adult mdx mouse muscle. FEBS Lett 552:145–149

    Article  CAS  PubMed  Google Scholar 

  80. Graham IR, Hill VJ, Manoharan M et al (2004) Towards a therapeutic inhibition of dystrophin exon 23 splicing in mdx mouse muscle induced by antisense oligoribonucleotides (splicomers): target sequence optimisation using oligonucleotide arrays. J Gene Med 6:1149–1158. https://doi.org/10.1002/jgm.603

    Article  CAS  PubMed  Google Scholar 

  81. Lu QL, Rabinowitz A, Chen YC et al (2005) Systemic delivery of antisense oligoribonucleotide restores dystrophin expression in body-wide skeletal muscles. Proc Natl Acad Sci U S A 102:198–203. https://doi.org/10.1073/pnas.0406700102

    Article  CAS  PubMed  Google Scholar 

  82. Alter J, Lou F, Rabinowitz A et al (2006) Systemic delivery of morpholino oligonucleotide restores dystrophin expression bodywide and improves dystrophic pathology. Nat Med 12:175–177. https://doi.org/10.1038/nm1345

    Article  CAS  PubMed  Google Scholar 

  83. Yu X, Bao B, Echigoya Y, Yokota T (2015) Dystrophin-deficient large animal models: translational research and exon skipping. Am J Transl Res 7:1314–1331

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Shimatsu Y, Katagiri K, Furuta T et al (2003) Canine X-linked muscular dystrophy in Japan (CXMDJ). Exp Anim 52:93–97

    Article  CAS  PubMed  Google Scholar 

  85. Yokota T, Lu Q-L, Partridge T et al (2009) Efficacy of systemic morpholino exon-skipping in Duchenne dystrophy dogs. Ann Neurol 65:667–676. https://doi.org/10.1002/ana.21627

    Article  PubMed  PubMed Central  Google Scholar 

  86. McClorey G, Moulton HM, Iversen PL et al (2006) Antisense oligonucleotide-induced exon skipping restores dystrophin expression in vitro in a canine model of DMD. Gene Ther 13:1373–1381. https://doi.org/10.1038/sj.gt.3302800

    Article  CAS  PubMed  Google Scholar 

  87. Takeshima Y, Yagi M, Wada H et al (2006) Intravenous infusion of an antisense oligonucleotide results in exon skipping in muscle dystrophin mRNA of Duchenne muscular dystrophy. Pediatr Res 59:690–694. https://doi.org/10.1203/01.pdr.0000215047.51278.7c

    Article  CAS  PubMed  Google Scholar 

  88. van Deutekom JC, Janson AA, Ginjaar IB et al (2007) Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med 357:2677–2686. https://doi.org/10.1056/NEJMoa073108

    Article  PubMed  Google Scholar 

  89. Kinali M, Arechavala-Gomeza V, Feng L et al (2009) Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol 8:918–928. https://doi.org/10.1016/S1474-4422(09)70211-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mendell JR, Rodino-Klapac LR, Sahenk Z et al (2013) Eteplirsen for the treatment of Duchenne muscular dystrophy. Ann Neurol 74:637–647. https://doi.org/10.1002/ana.23982

    Article  CAS  PubMed  Google Scholar 

  91. Kesselheim AS, Avorn J (2016) Approving a problematic muscular dystrophy drug: implications for FDA policy. JAMA 316(22):2357–2358. https://doi.org/10.1001/jama.2016.16437

    Article  PubMed  Google Scholar 

  92. Lim KRQ, Maruyama R, Yokota T (2017) Eteplirsen in the treatment of Duchenne muscular dystrophy. Drug Des Devel Ther 11:533–545. https://doi.org/10.2147/DDDT.S97635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. U.S. Food and Drug Administration: Center for Drug Evaluation and Research (2016) Summary review, application number: 206488Orig1s000. http://www.accessdata.fda.gov/drugsatfda_docs/nda/2016/206488_summary review_Redacted.pdf. Accessed 30 Aug 2017

  94. Echigoya Y, Lim KRQ, Trieu N et al (2017) Quantitative antisense screening and optimization for exon 51 skipping in duchenne muscular dystrophy. Mol Ther 25(11):2561–2572. https://doi.org/10.1016/j.ymthe.2017.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Guncay A, Yokota T (2015) Antisense oligonucleotide drugs for Duchenne muscular dystrophy: how far have we come and what does the future hold? Future Med Chem 7:1631–1635. https://doi.org/10.4155/fmc.15.116

    Article  CAS  PubMed  Google Scholar 

  96. Nguyen Q, Yokota T (2017) Immortalized muscle cell model to test the exon skipping efficacy for duchenne muscular dystrophy. J Pers Med 7:13. https://doi.org/10.3390/jpm7040013

    Article  PubMed Central  Google Scholar 

  97. Taylor JK, Zhang QQ, Wyatt JR, Dean NM (1999) Induction of endogenous Bcl-xS through the control of Bcl-x pre-mRNA splicing by antisense oligonucleotides. Nat Biotechnol 17:1097–1100. https://doi.org/10.1038/15079

    Article  CAS  PubMed  Google Scholar 

  98. Martin P (1995) Ein neuer Zugang zu 2?-O-Alkylribonucleosiden und Eigenschaften deren Oligonucleotide. Helv Chim Acta 78:486–504. https://doi.org/10.1002/hlca.19950780219

    Article  CAS  Google Scholar 

  99. Mercatante DR, Kole R (2002) Control of alternative splicing by antisense oligonucleotides as a potential chemotherapy: effects on gene expression. Biochim Biophys Acta 1587:126–132. https://doi.org/10.1016/S0925-4439(02)00075-3

    Article  CAS  PubMed  Google Scholar 

  100. Mercatante DR, Bortner CD, Cidlowski JA, Kole R (2001) Modification of alternative splicing of Bcl-x pre-mRNA in prostate and breast cancer cells. Analysis of apoptosis and cell death. J Biol Chem 276:16411–16417. https://doi.org/10.1074/jbc.M009256200

    Article  CAS  PubMed  Google Scholar 

  101. McGrath JA, Ashton GHS, Mellerio JE et al (1999) Moderation of phenotypic severity in dystrophic and junctional forms of epidermolysis bullosa through in-frame skipping of exons containing non-sense or frameshift mutations. J Invest Dermatol 113:314–321. https://doi.org/10.1046/j.1523-1747.1999.00709.x

    Article  CAS  PubMed  Google Scholar 

  102. Kalbfuss B, Mabon SA, Misteli T (2001) Correction of alternative splicing of tau in frontotemporal dementia and parkinsonism linked to chromosome 17. J Biol Chem 276:42986–42993. https://doi.org/10.1074/jbc.M105113200

    Article  CAS  PubMed  Google Scholar 

  103. Renshaw J, Orr RM, Walton MI et al (2004) Disruption of WT1 gene expression and exon 5 splicing following cytotoxic drug treatment: antisense down-regulation of exon 5 alters target gene expression and inhibits cell survival. Mol Cancer Ther 3:1467–1484

    CAS  PubMed  Google Scholar 

  104. Meijboom KE, Wood MJA, McClorey G (2017) Splice-switching therapy for spinal muscular atrophy. Genes (Basel) 8(6):E161. https://doi.org/10.3390/genes8060161

    Article  CAS  Google Scholar 

  105. Arnold WD, Kassar D, Kissel JT (2015) Spinal muscular atrophy: diagnosis and management in a new therapeutic era. Muscle Nerve 51:157–167. https://doi.org/10.1002/mus.24497

    Article  CAS  PubMed  Google Scholar 

  106. Wirth B, Herz M, Wetter A et al (1999) Quantitative analysis of survival motor neuron copies: identification of subtle SMN1 mutations in patients with spinal muscular atrophy, genotype-phenotype correlation, and implications for genetic counseling. Am J Hum Genet 64:1340–1356. https://doi.org/10.1086/302369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mailman MD, Heinz JW, Papp AC et al (2002) Molecular analysis of spinal muscular atrophy and modification of the phenotype by SMN2. Genet Med 4:20–26. https://doi.org/10.1097/00125817-200201000-00004

    Article  CAS  PubMed  Google Scholar 

  108. Lorson CL, Hahnen E, Androphy EJ, Wirth B (1999) A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci U S A 96:6307–6311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Monani UR, Lorson CL, Parsons DW et al (1999) A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum Mol Genet 8:1177–1183

    Article  CAS  PubMed  Google Scholar 

  110. Lim SR, Hertel KJ (2001) Modulation of survival motor neuron pre-mRNA splicing by inhibition of alternative 3′ splice site pairing. J Biol Chem 276:45476–45483. https://doi.org/10.1074/jbc.M107632200

    Article  CAS  PubMed  Google Scholar 

  111. Miyajima H, Miyaso H, Okumura M et al (2002) Identification of a cis-acting element for the regulation of SMN exon 7 splicing. J Biol Chem 277:23271–23277. https://doi.org/10.1074/jbc.M200851200

    Article  CAS  PubMed  Google Scholar 

  112. Skordis LA, Dunckley MG, Yue B et al (2003) Bifunctional antisense oligonucleotides provide a trans-acting splicing enhancer that stimulates SMN2 gene expression in patient fibroblasts. Proc Natl Acad Sci U S A 100:4114–4119. https://doi.org/10.1073/pnas.0633863100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Touznik A, Maruyama R, Hosoki K et al (2017) LNA/DNA mixmer-based antisense oligonucleotides correct alternative splicing of the SMN2 gene and restore SMN protein expression in type 1 SMA fibroblasts. Sci Rep 7:3672. https://doi.org/10.1038/s41598-017-03850-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Singh NK, Singh NN, Androphy EJ, Singh RN (2006) Splicing of a critical exon of human survival motor neuron is regulated by a unique silencer element located in the last intron. Mol Cell Biol 26:1333–1346. https://doi.org/10.1128/MCB.26.4.1333-1346.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hua Y, Vickers TA, Okunola HL et al (2008) Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice. Am J Hum Genet 82:834–848. https://doi.org/10.1016/j.ajhg.2008.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hua Y, Sahashi K, Hung G et al (2010) Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model. Genes Dev 24:1634–1644. https://doi.org/10.1101/gad.1941310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Passini MA, Bu J, Richards AM et al (2011) Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci Transl Med 3:72ra18. https://doi.org/10.1126/scitranslmed.3001777

    Article  PubMed  PubMed Central  Google Scholar 

  118. Chiriboga CA, Swoboda KJ, Darras BT et al (2016) Results from a phase 1 study of nusinersen (ISIS-SMN Rx ) in children with spinal muscular atrophy. Neurology 86:890–897. https://doi.org/10.1212/WNL.0000000000002445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. U.S. Food and Drug Administration (2016) FDA approves first drug for spinal muscular atrophy. https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm534611.htm. Accessed 29 Nov 2017

  120. Juliano R, Bauman J, Kang H, Ming X (2009) Biological barriers to therapy with antisense and siRNA oligonucleotides. Mol Pharm 6:686–695. https://doi.org/10.1021/mp900093r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Khvorova A, Watts JK (2017) The chemical evolution of oligonucleotide therapies of clinical utility. Nat Biotechnol 35:238–248. https://doi.org/10.1038/nbt.3765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Nielsen PE, Egholm M, Berg RH, Buchardt O (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254:1497–1500

    Article  CAS  PubMed  Google Scholar 

  123. Koshkin AA, Singh SK, Nielsen P et al (1998) LNA (locked nucleic acids): synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron 54:3607–3630. https://doi.org/10.1016/S0040-4020(98)00094-5

    Article  CAS  Google Scholar 

  124. Obika S, Nanbu D, Hari Y et al (1998) Stability and structural features of the duplexes containing nucleoside analogues with a fixed N-type conformation, 2′-O,4′-C-methyleneribonucleosides. Tetrahedron Lett 39:5401–5404. https://doi.org/10.1016/S0040-4039(98)01084-3

    Article  CAS  Google Scholar 

  125. Steffens R, Leumann CJ (1999) Synthesis and thermodynamic and biophysical properties of tricyclo-DNA. J Am Chem Soc 121:3249–3255. https://doi.org/10.1021/ja983570w

    Article  CAS  Google Scholar 

  126. Seth PP, Siwkowski A, Allerson CR et al (2008) Design, synthesis and evaluation of constrained methoxyethyl (cMOE) and constrained ethyl (cEt) nucleoside analogs. Nucleic Acids Symp Ser (Oxf) 52:553–554. https://doi.org/10.1093/nass/nrn280

    Article  CAS  Google Scholar 

  127. Moulton HM, Moulton JD (2010) Morpholinos and their peptide conjugates: therapeutic promise and challenge for Duchenne muscular dystrophy. Biochim Biophys Acta 1798:2296–2303. https://doi.org/10.1016/j.bbamem.2010.02.012

    Article  CAS  PubMed  Google Scholar 

  128. Moulton HM, Moulton JD (2003) Peptide-assisted delivery of steric-blocking antisense oligomers. Curr Opin Mol Ther 5:123–132

    CAS  PubMed  Google Scholar 

  129. Echigoya Y, Nakamura A, Nagata T et al (2017) Effects of systemic multiexon skipping with peptide-conjugated morpholinos in the heart of a dog model of Duchenne muscular dystrophy. Proc Natl Acad Sci 114:4213–4218. https://doi.org/10.1073/pnas.1613203114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Echigoya Y, Mouly V, Garcia L et al (2015) In silico screening based on predictive algorithms as a design tool for exon skipping oligonucleotides in duchenne muscular dystrophy. PLoS One 10:e0120058. https://doi.org/10.1371/journal.pone.0120058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. O’Leary DA, Sharif O, Anderson P et al (2009) Identification of small molecule and genetic modulators of AON-induced dystrophin exon skipping by high-throughput screening. PLoS One 4:e8348. https://doi.org/10.1371/journal.pone.0008348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Naryshkin N, Dakka A, Gabbeta V et al (2015) Small molecule compounds that promote exon skipping in the DMD gene. Neuromuscul Disord 25:S261. https://doi.org/10.1016/j.nmd.2015.06.275

    Article  Google Scholar 

  133. Kendall GC, Mokhonova EI, Moran M et al (2012) Dantrolene enhances antisense-mediated exon skipping in human and mouse models of Duchenne muscular dystrophy. Sci Transl Med 4:164ra160. https://doi.org/10.1126/scitranslmed.3005054

    Article  CAS  PubMed  Google Scholar 

  134. Han G, Gu B, Cao L et al (2016) Hexose enhances oligonucleotide delivery and exon skipping in dystrophin-deficient mdx mice. Nat Commun 7:10981. https://doi.org/10.1038/ncomms10981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yokota T, Takeda S, Lu Q-L et al (2009) A renaissance for antisense oligonucleotide drugs in neurology: exon skipping breaks new ground. Arch Neurol 66:32–38. https://doi.org/10.1001/archneurol.2008.540

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshifumi Yokota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lim, K.R.Q., Yokota, T. (2018). Invention and Early History of Exon Skipping and Splice Modulation. In: Yokota, T., Maruyama, R. (eds) Exon Skipping and Inclusion Therapies. Methods in Molecular Biology, vol 1828. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8651-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8651-4_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8650-7

  • Online ISBN: 978-1-4939-8651-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics