Skip to main content

Selection and Use of Intracellular Antibodies

Part of the Methods in Molecular Biology book series (MIMB,volume 1827)

Abstract

Intracellularly expressed recombinant antibodies, or intrabodies, are powerful tools for cell biology studies as well as therapeutic applications. Cell biologists use them to either block the intracellular antibody target or to image endogenous target dynamics. We describe here methods to select recombinant antibodies from antibody phage display libraries and to subsequently express them as fluorescent intrabodies.

Key words

  • Phage display
  • Intrabody
  • Live cell imaging

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-8648-4_25
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-8648-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Biocca S, Neuberger MS, Cattaneo A (1990) Expression and targeting of intracellular antibodies in mammalian cells. EMBO J 9:101–108

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cochet O, Kenigsberg M, Delumeau I, Virone-Oddos A, Multon MC, Fridman WH, Schweighoffer F, Teillaud JL, Tocque B (1998) Intracellular expression of an antibody fragment-neutralizing p21 ras promotes tumor regression. Cancer Res 58:1170–1176

    PubMed  CAS  Google Scholar 

  3. Lobato MN, Rabbitts TH (2003) Intracellular antibodies and challenges facing their use as therapeutic agents. Trends Mol Med 9(9):390–396

    CrossRef  CAS  PubMed  Google Scholar 

  4. Philibert P, Stoessel A, Wang W et al (2007) A focused antibody library for selecting scFvs expressed at high levels in the cytoplasm. BMC Biotechnol 7:81

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  5. Visintin M, Settanni G, Maritan A et al (2002) The intracellular antibody capture technology (IACT): towards a consensus sequence for intracellular antibodies. J MolBiol 317:73–83

    CrossRef  CAS  Google Scholar 

  6. Holliger P, Hudson PJ (2005) Engineered antibody fragments and the rise of single domains. Nat Biotechnol 23:1126–1136

    CrossRef  CAS  PubMed  Google Scholar 

  7. Moutel S, Bery N, Bernard V, Keller L, Lemesre E, de Marco A, Ligat L, Rain JC, Favre G, Olichon A, Perez F (2016) NaLi-H1: a universal synthetic library of humanized nanobodies providing highly functional antibodies and intrabodies. elife 19:5. pii: e16228. https://doi.org/10.7554/eLife.16228

    CrossRef  Google Scholar 

  8. Traenkle B, Rothbauer U (2017) Under the microscope: single-domain antibodies for live-cell imaging and super-resolution microscopy. Front Immunol 8:1030. https://doi.org/10.3389/fimmu.2017.01030

    CrossRef  PubMed  PubMed Central  Google Scholar 

  9. Nizak C, Monier S, del Nery E, Moutel S, Goud B, Perez F (2003) Recombinant antibodies to the small GTPase Rab6 as conformation sensors. Science 300:984–987

    CrossRef  CAS  PubMed  Google Scholar 

  10. Moutel S, Vielemeyer O, Jin H, Divoux S, Benaroch P, Perez F (2009) Fully in vitro selection of recombinant antibodies. Biotechnol J 4:38–43

    CrossRef  CAS  PubMed  Google Scholar 

  11. de Wildt RM, Mundy CR, Gorick BD, Tomlinson IM (2000) Antibody arrays for high-throughput screening of antibody-antigen interactions. Nat Biotechnol 18:989–994. https://doi.org/10.1038/79494

    CrossRef  PubMed  CAS  Google Scholar 

  12. Griffiths AD, Malmqvist M, Marks JD, Bye JM, Embleton MJ, McCafferty J et al (1993) Human anti-self antibodies with high specificity from phage display libraries. EMBO J 12:725–734

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jordan M, Schallhorn A, Wurm FM (1996) Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucleic Acids Res 24(4):596–601

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dimitrov A, Quesnoit M, Moutel S, Cantaloube I, Poüs C, Perez F (2008) Detection of GTP-tubulin conformation in vivo reveals a role for GTP remnants in microtubule rescues. Science 322(5906):1353–1356

    CrossRef  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Centre National de la Recherche Scientifique (CNRS), the Institut Curie, and the LaBex CelTisPhyBio (ANR-10-LBX-0038 part of the IDEX PSL no ANR-10-IDEX-0001-02) and by grants from the Agence National de la Recherche (ANR), the Institut National du Cancer (INCa), and the Agence Nationale de Recherche sur le SIDA (ANRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck Perez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Moutel, S., Nizak, C., Perez, F. (2018). Selection and Use of Intracellular Antibodies. In: Nevoltris, D., Chames, P. (eds) Antibody Engineering. Methods in Molecular Biology, vol 1827. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8648-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8648-4_25

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8647-7

  • Online ISBN: 978-1-4939-8648-4

  • eBook Packages: Springer Protocols