Skip to main content

Chemoenzymatic Defucosylation of Therapeutic Antibodies for Enhanced Effector Functions Using Bacterial α-Fucosidases

  • Protocol
  • First Online:
Antibody Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1827))

Abstract

Core fucosylation plays a critical role in modulating the effector functions of therapeutic antibodies such as the antibody-dependent cellular cytotoxicity (ADCC) through adversely affecting the affinity of antibodies for Fcγ receptors. Thus, a facile method for Fc defucosylation of antibodies is important both for functional studies and for an enhanced therapeutic efficacy. In this chapter, we describe a detailed protocol for chemoenzymatic defucosylation of antibodies using Herceptin (trastuzumab) as a model system. The protocol includes (a) Fc deglycosylation using endoglycosidase S2 (Endo-S2); (b) enzymatic defucosylation of the resulting Fucα1,6GlcNAc-Herceptin using two distinct bacterial α-fucosidases, AlfC and BfFuc; (c) transglycosylation of the GlcNAc-Herceptin using an Endo-S2 mutant (Endo-S2 D184M) as the enzyme and a complex N-glycan oxazoline as the donor substrate; and (d) SPR analysis of the binding of antibody glycoforms with the FcγIIIA receptor. The protocol of enzymatic defucosylation of Herceptin should be equally applicable for the Fc glycan engineering of other mAbs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ecker DM, Jones SD, Levine HL (2015) The therapeutic monoclonal antibody market. MAbs 7(1):9–14. https://doi.org/10.4161/19420862.2015.989042

    Article  PubMed  CAS  Google Scholar 

  2. Adams GP, Weiner LM (2005) Monoclonal antibody therapy of cancer. Nat Biotechnol 23(9):1147–1157

    Article  CAS  PubMed  Google Scholar 

  3. Jefferis R (2005) Glycosylation of recombinant antibody therapeutics. Biotechnol Prog 21(1):11–16. https://doi.org/10.1021/bp040016j

    Article  PubMed  CAS  Google Scholar 

  4. Shields RL, Lai J, Keck R, O'Connell LY, Hong K, Meng YG, Weikert SH, Presta LG (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem 277(30):26733–26740. https://doi.org/10.1074/jbc.M202069200

    Article  PubMed  CAS  Google Scholar 

  5. Shinkawa T, Nakamura K, Yamane N, Shoji-Hosaka E, Kanda Y, Sakurada M, Uchida K, Anazawa H, Satoh M, Yamasaki M, Hanai N, Shitara K (2003) The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem 278(5):3466–3473. https://doi.org/10.1074/jbc.M210665200

    Article  PubMed  CAS  Google Scholar 

  6. Nimmerjahn F, Ravetch JV (2005) Divergent immunoglobulin g subclass activity through selective Fc receptor binding. Science 310(5753):1510–1512. https://doi.org/10.1126/science.1118948

    Article  PubMed  CAS  Google Scholar 

  7. Beck A, Reichert JM (2012) Marketing approval of mogamulizumab. MAbs 4(4):419–425. https://doi.org/10.4161/mabs.20996

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gagez AL, Cartron G (2014) Obinutuzumab: a new class of anti-CD20 monoclonal antibody. Curr Opin Oncol 26(5):484–491. https://doi.org/10.1097/CCO.0000000000000107

    Article  PubMed  CAS  Google Scholar 

  9. Huang W, Giddens J, Fan SQ, Toonstra C, Wang LX (2012) Chemoenzymatic glycoengineering of intact IgG antibodies for gain of functions. J Am Chem Soc 134(29):12308–12318. https://doi.org/10.1021/ja3051266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Li T, Tong X, Yang Q, Giddens JP, Wang LX (2016) Glycosynthase mutants of endoglycosidase S2 show potent transglycosylation activity and remarkably relaxed substrate specificity for antibody glycosylation remodeling. J Biol Chem 291(32):16508–16518. https://doi.org/10.1074/jbc.M116.738765

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Wang LX, Amin MN (2014) Chemical and chemoenzymatic synthesis of glycoproteins for deciphering functions. Chem Biol 21(1):51–66. https://doi.org/10.1016/j.chembiol.2014.01.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Tsai TI, Li ST, Liu CP, Chen KY, Shivatare SS, Lin CW, Liao SF, Lin CW, Hsu TL, Wu YT, Tsai MH, Lai MY, Lin NH, Wu CY, Wong CH (2017) An effective bacterial fucosidase for glycoprotein remodeling. ACS Chem Biol 12(1):63–72. https://doi.org/10.1021/acschembio.6b00821

    Article  PubMed  CAS  Google Scholar 

  13. Lin CW, Tsai MH, Li ST, Tsai TI, Chu KC, Liu YC, Lai MY, Wu CY, Tseng YC, Shivatare SS, Wang CH, Chao P, Wang SY, Shih HW, Zeng YF, You TH, Liao JY, Tu YC, Lin YS, Chuang HY, Chen CL, Tsai CS, Huang CC, Lin NH, Ma C, Wong CH (2015) A common glycan structure on immunoglobulin G for enhancement of effector functions. Proc Natl Acad Sci U S A 112(34):10611–10616. https://doi.org/10.1073/pnas.1513456112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Giddens JP, Wang LX (2015) Chemoenzymatic Glyco-engineering of monoclonal antibodies. Methods Mol Biol 1321:375–387. https://doi.org/10.1007/978-1-4939-2760-9_25

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yang Q, Wang LX (2017) Chemoenzymatic glycan remodeling of natural and recombinant glycoproteins. Methods Enzymol 597:265–281. https://doi.org/10.1016/bs.mie.2017.06.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Becerra JE, Coll-Marques JM, Rodriguez-Diaz J, Monedero V, Yebra MJ (2015) Preparative scale purification of fucosyl-N-acetylglucosamine disaccharides and their evaluation as potential prebiotics and antiadhesins. Appl Microbiol Biotechnol 99(17):7165–7176. https://doi.org/10.1007/s00253-015-6666-2

    Article  PubMed  CAS  Google Scholar 

  17. Rodriguez-Diaz J, Carbajo RJ, Pineda-Lucena A, Monedero V, Yebra MJ (2013) Synthesis of fucosyl-N-acetylglucosamine disaccharides by transfucosylation using alpha-L-fucosidases from lactobacillus casei. Appl Environ Microbiol 79(12):3847–3850. https://doi.org/10.1128/AEM.00229-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Rodriguez-Diaz J, Monedero V, Yebra MJ (2011) Utilization of natural fucosylated oligosaccharides by three novel alpha-L-fucosidases from a probiotic Lactobacillus casei strain. Appl Environ Microbiol 77(2):703–705. https://doi.org/10.1128/AEM.01906-10

    Article  PubMed  CAS  Google Scholar 

  19. Li C, Zhu S, Ma C, Wang LX (2017) Designer alpha1,6-fucosidase mutants enable direct core fucosylation of intact N-glycopeptides and N-glycoproteins. J Am Chem Soc 139(42):15074–15087. https://doi.org/10.1021/jacs.7b07906

    Article  PubMed  CAS  Google Scholar 

  20. Huang W, Li J, Wang LX (2011) Unusual transglycosylation activity of Flavobacterium meningosepticum Endoglycosidases enables convergent chemoenzymatic synthesis of core fucosylated complex N-glycopeptides. Chembiochem 12(6):932–941. https://doi.org/10.1002/cbic.201000763

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Champion T, Beck A (2013) Capture of the human IgG1 antibodies by protein A for the kinetic study of h-IgG/FcgammaR interaction using SPR-based biosensor technology. Methods Mol Biol 988:331–343. https://doi.org/10.1007/978-1-62703-327-5_21

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank other members of the Wang Lab for technical assistance and helpful discussions. This work was supported by the National Institutes of Health (NIH grants R01GM080374 and R01GM096973 to LXW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lai-Xi Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Li, C., Li, T., Wang, LX. (2018). Chemoenzymatic Defucosylation of Therapeutic Antibodies for Enhanced Effector Functions Using Bacterial α-Fucosidases. In: Nevoltris, D., Chames, P. (eds) Antibody Engineering. Methods in Molecular Biology, vol 1827. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8648-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8648-4_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8647-7

  • Online ISBN: 978-1-4939-8648-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics