Skip to main content

Finding Potential Multitarget Ligands Using PubChem

  • Protocol
  • First Online:
Computational Chemogenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1825))

Abstract

PubChem (https://pubchem.ncbi.nlm.nih.gov) is a key chemical information resource, developed and maintained by the US National Institutes of Health. The present chapter describes how to find potential multitarget ligands from PubChem that would be tested in further experiments. While the protocol presented here uses PubChem’s Web-based interfaces to allow users to follow it interactively, it can also be implemented in computer software by using programmatic access interfaces to PubChem (such as PUG-REST or E-Utilities).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA, Wang J, Yu B, Zhang J, Bryant SH (2016) PubChem substance and compound databases. Nucleic Acids Res 44(D1):D1202–D1213. https://doi.org/10.1093/nar/gkv951

    Article  CAS  Google Scholar 

  2. Wang YL, Suzek T, Zhang J, Wang JY, He SQ, Cheng TJ, Shoemaker BA, Gindulyte A, Bryant SH (2014) PubChem BioAssay: 2014 update. Nucleic Acids Res 42(D1):D1075–D1082. https://doi.org/10.1093/nar/gkt978

    Article  CAS  PubMed  Google Scholar 

  3. Kim S (2016) Getting the most out of PubChem for virtual screening. Expert Opin Drug Discov 11(9):843–855. https://doi.org/10.1080/17460441.2016.1216967

    Article  PubMed  PubMed Central  Google Scholar 

  4. Johnson MA, Maggiora GM (eds) (1990) Concepts and applications of molecular similarity. John Wiley & Sons, Inc., New York, NY

    Google Scholar 

  5. Pietras K, Sjoblom T, Rubin K, Heldin CH, Ostman A (2003) PDGF receptors as cancer drug targets. Cancer Cell 3(5):439–443. https://doi.org/10.1016/s1535-6108(03)00089-8

    Article  CAS  PubMed  Google Scholar 

  6. Board R, Jayson GC (2005) Platelet-derived growth factor receptor (PDGFR): a target for anticancer therapeutics. Drug Resist Update 8(1–2):75–83. https://doi.org/10.1016/j.drup.2005.03.004

    Article  CAS  Google Scholar 

  7. Traxler P (2003) Tyrosine kinases as targets in cancer therapy–successes and failures. Expert Opin Ther Targets 7(2):215–234. https://doi.org/10.1517/14728222.7.2.215

    Article  CAS  PubMed  Google Scholar 

  8. Roskoski R (2007) Sunitinib: a VEGF and PDGF receptor protein kinase and angiogenesis inhibitor. Biochem Biophys Res Commun 356(2):323–328. https://doi.org/10.1016/j.bbre.2007.02.156

    Article  CAS  PubMed  Google Scholar 

  9. Ellis LM, Hicklin DJ (2008) VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat Rev Cancer 8(8):579–591. https://doi.org/10.1038/nrc2403

    Article  CAS  PubMed  Google Scholar 

  10. Takahashi S (2011) Vascular endothelial growth factor (VEGF), VEGF receptors and their inhibitors for antiangiogenic tumor therapy. Biol Pharm Bull 34(12):1785–1788

    Article  CAS  Google Scholar 

  11. Kim S, Thiessen PA, Bolton EE, Bryant SH (2015) PUG-SOAP and PUG-REST: web services for programmatic access to chemical information in PubChem. Nucleic Acids Res 43(W1):W605–W611. https://doi.org/10.1093/nar/gkv396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schuler GD, Epstein JA, Ohkawa H, Kans JA (1996) Entrez: molecular biology database and retrieval system. Methods Enzymol 266:141–162. https://doi.org/10.1016/S0076-6879(96)66012-1

    Article  CAS  PubMed  Google Scholar 

  13. McEntyre J (1998) Linking up with Entrez. Trends Gene 14(1):39–40. https://doi.org/10.1016/s0168-9525(97)01325-5

    Article  CAS  Google Scholar 

  14. Entrez Help (2005) National Center for Biotechnology Information (US). https://www.ncbi.nlm.nih.gov/books/NBK3836/

  15. Agarwala R, Barrett T, Beck J, Benson DA, Bollin C, Bolton E, Bourexis D, Brister JR, Bryant SH, Lanese K, Charowhas C, Clark K, DiCuccio M, Dondoshansky I, Federhen S, Feolo M, Funk K, Geer LY, Gorelenkov V, Hoeppner M, Holmes B, Johnson M, Khotomlianski V, Kimchi A, Kimelman M, Kitts P, Klimke W, Krasnov S, Kuznetsov A, Landrum MJ, Landsman D, Lee JM, Lipman DJ, Lu ZY, Madden TL, Madcj T, Marchler-Bauer A, Karsch-Mizrachi I, Murphy T, Orris R, Ostell J, O'Sullivan C, Panchenko A, Phan L, Preuss D, Pruitt KD, Rodarmer K, Rubinstein W, Sayers EW, Schneider V, Schuler GD, Sherry ST, Sirotkin K, Siyan K, Slotta D, Soboleva A, Soussov V, Starchenko G, Tatusova TA, Todorov K, Trawick BW, Vakatov D, Wang YL, Ward M, Wilbur WJ, Yaschenko E, Zbicz K, Coordinators NR (2016) Database resources of the national center for biotechnology information. Nucleic Acids Res 44(D1):D7–D19. https://doi.org/10.1093/nar/gkv1290

    Article  CAS  Google Scholar 

  16. FLink (2010) Frequency weighted links. National Center for Biotechnology Information, National Library of Medicine. https://www.ncbi.nlm.nih.gov/Structure/flink/flink.cgi

  17. Dalby A, Nourse JG, Hounshell WD, Gushurst AKI, Grier DL, Leland BA, Laufer J (1992) Description of several chemical-structure file formats used by computer-programs developed at molecular design limited. J Chem Inf Comput Sci 32(3):244–255. https://doi.org/10.1021/ci00007a012

    Article  CAS  Google Scholar 

  18. Weininger D (1988) Smiles, a chemical language and information-system .1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 28(1):31–36. https://doi.org/10.1021/ci00057a005

    Article  CAS  Google Scholar 

  19. Weininger D, Weininger A, Weininger JL (1989) Smiles .2. Algorithm for generation of unique smiles notation. J Chem Inf Comput Sci 29(2):97–101. https://doi.org/10.1021/ci00062a008

    Article  CAS  Google Scholar 

  20. Weininger D (1990) Smiles .3. Depict–graphical depiction of chemical structures. J Chem Inf Comput Sci 30(3):237–243. https://doi.org/10.1021/ci00067a005

    Article  CAS  Google Scholar 

  21. Heller S, McNaught A, Stein S, Tchekhovskoi D, Pletnev I (2013) InChI–the worldwide chemical structure identifier standard. J Cheminform 5:7. https://doi.org/10.1186/1758-2946-5-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Heller S, McNaught A, Pletnev I, Stein S, Tchekhovskoi D (2015) InChI, the IUPAC international chemical identifier. J Cheminform 7:23. https://doi.org/10.1186/s13321-015-0068-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bender A, Glen RC (2004) Molecular similarity: a key technique in molecular informatics. Org Biomol Chem 2(22):3204–3218. https://doi.org/10.1039/b409813g

    Article  CAS  PubMed  Google Scholar 

  24. Maldonado AG, Doucet JP, Petitjean M, Fan BT (2006) Molecular similarity and diversity in chemoinformatics: from theory to applications. Mol Divers 10(1):39–79. https://doi.org/10.1007/s11030-006-8697-1

    Article  CAS  PubMed  Google Scholar 

  25. Eckert H, Bojorath J (2007) Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches. Drug Discov Today 12(5–6):225–233. https://doi.org/10.1016/j.drudis.2007.01.011

    Article  CAS  PubMed  Google Scholar 

  26. Willett P (2014) The calculation of molecular structural similarity: principles and practice. Mol Inf 33(6–7):403–413. https://doi.org/10.1002/minf.201400024

    Article  CAS  Google Scholar 

  27. Koutsoukas A, Paricharak S, Galloway W, Spring DR, Ijzerman AP, Glen RC, Marcus D, Bender A (2014) How diverse are diversity assessment methods? A comparative analysis and benchmarking of molecular descriptor space. J Chem Inf Model 54(1):230–242. https://doi.org/10.1021/ci400469u

    Article  CAS  PubMed  Google Scholar 

  28. Sheridan RP, Kearsley SK (2002) Why do we need so many chemical similarity search methods? Drug Discov Today 7(17):903–911. https://doi.org/10.1016/s1359-6446(02)02411-x

    Article  PubMed  Google Scholar 

  29. Kim S, Bolton EE, Bryant SH (2016) Similar compounds versus similar conformers: complementarity between PubChem 2-D and 3-D neighboring sets. J Cheminform 8:62. https://doi.org/10.1186/s13321-016-0163-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bolton EE, Kim S, Bryant SH (2011) PubChem3D: similar conformers. J Cheminform 3:13. https://doi.org/10.1186/1758-2946-3-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bolton EE, Chen J, Kim S, Han LY, He SQ, Shi WY, Simonyan V, Sun Y, Thiessen PA, Wang JY, Yu B, Zhang J, Bryant SH (2011) PubChem3D: a new resource for scientists. J Cheminform 3:32. https://doi.org/10.1186/1758-2946-3-32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim S, Bolton EE, Bryant SH (2011) PubChem3D: biologically relevant 3-D similarity. J Cheminform 3:26. https://doi.org/10.1186/1758-2946-3-26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim S, Bolton EE, Bryant SH (2012) Effects of multiple conformers per compound upon 3-D similarity search and bioassay data analysis. J Cheminform 4:28. https://doi.org/10.1186/1758-2946-4-28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim S, Han LY, Yu B, Hahnke VD, Bolton EE, Bryant SH (2015) PubChem structure-activity relationship (SAR) clusters. J Cheminform 7:33. https://doi.org/10.1186/s13321-015-0070-x

    Article  PubMed  PubMed Central  Google Scholar 

  35. PubChem substructure fingerprint description. ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.pdf

  36. Chen X, Reynolds CH (2002) Performance of similarity measures in 2D fragment-based similarity searching: comparison of structural descriptors and similarity coefficients. J Chem Inf Comput Sci 42(6):1407–1414. https://doi.org/10.1021/ci025531g

    Article  CAS  PubMed  Google Scholar 

  37. Holliday JD, Salim N, Whittle M, Willett P (2003) Analysis and display of the size dependence of chemical similarity coefficients. J Chem Inf Comput Sci 43(3):819–828. https://doi.org/10.1021/ci034001x

    Article  CAS  PubMed  Google Scholar 

  38. Holliday JD, Hu CY, Willett P (2002) Grouping of coefficients for the calculation of inter-molecular similarity and dissimilarity using 2D fragment bit-strings. Comb Chem High Throughput Screen 5(2):155–166

    Article  CAS  Google Scholar 

  39. Grant JA, Pickup BT (1995) A Gaussian description of molecular shape. J Phys Chem 99(11):3503–3510

    Article  CAS  Google Scholar 

  40. Grant JA, Gallardo MA, Pickup BT (1996) A fast method of molecular shape comparison: a simple application of a Gaussian description of molecular shape. J Comput Chem 17(14):1653–1666

    Article  CAS  Google Scholar 

  41. Grant JA, Pickup BT (1996) A Gaussian description of molecular shape (vol 99, pg 3505, 1995). J Phys Chem 100(6):2456–2456

    Article  CAS  Google Scholar 

  42. Grant JA, Pickup BT (1997) Gaussian shape methods. In: van Gunsteren WF, Weiner PK, Wilkinson AJ (eds) Computer simulation of biomolecular systems. Kluwer Academic Publishers, Dordrecht, pp 150–176

    Chapter  Google Scholar 

  43. Rush TS, Grant JA, Mosyak L, Nicholls A (2005) A shape-based 3-D scaffold hopping method and its application to a bacterial protein-protein interaction. J Med Chem 48(5):1489–1495. https://doi.org/10.1021/jm040163o

    Article  CAS  PubMed  Google Scholar 

  44. ROCS–rapid overlay of chemical structures (2010) 3.1.0 edn. OpenEye Scientific Software, Inc., Santa Fe, NM

    Google Scholar 

  45. ShapeTK–C++ (2010) 1.8.0 edn. OpenEye Scientific Software, Inc., Santa Fe, NM

    Google Scholar 

  46. Bolton EE, Kim S, Bryant SH (2011) PubChem3D: conformer generation. J Cheminform 3:4. https://doi.org/10.1186/1758-2946-3-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim S, Bolton EE, Bryant SH (2013) PubChem3D: conformer ensemble accuracy. J Cheminform 5(1). https://doi.org/10.1186/1758-2946-5-1

    Article  Google Scholar 

  48. Borodina YV, Bolton E, Fontaine F, Bryant SH (2007) Assessment of conformational ensemble sizes necessary for specific resolutions of coverage of conformational space. J Chem Inf Model 47(4):1428–1437. https://doi.org/10.1021/ci7000956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fu G, Batchelor C, Dumontier M, Hastings J, Willighagen E, Bolton E (2015) PubChemRDF: towards the semantic annotation of PubChem compound and substance databases. J Cheminform 7:34. https://doi.org/10.1186/s13321-015-0084-4

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Intramural Research Program of the National Library of Medicine, National Institutes of Health, US Department of Health and Human Services. We would like to thank Douglas Joubert, NIH Library Editing Service, for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghwan Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kim, S., Shoemaker, B.A., Bolton, E.E., Bryant, S.H. (2018). Finding Potential Multitarget Ligands Using PubChem. In: Brown, J. (eds) Computational Chemogenomics. Methods in Molecular Biology, vol 1825. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8639-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8639-2_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8638-5

  • Online ISBN: 978-1-4939-8639-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics