Protein-Ligand Docking in Drug Design: Performance Assessment and Binding-Pose Selection

Part of the Methods in Molecular Biology book series (MIMB, volume 1824)


Main goal in drug discovery is the identification of drug-like compounds capable to modulate specific biological targets. Thus, the prediction of reliable binding poses of candidate ligands, through molecular docking simulations, represents a key step to be pursued in structure-based drug design (SBDD). Since the increasing number of resolved three-dimensional ligand-protein structures, together with the expansion of computational power and software development, the comprehensive and systematic use of experimental data can be proficiently employed to validate the docking performance. This allows to select and refine the protocol to adopt when predicting the binding pose of trial compounds in a target. Given the availability of multiple docking software, a comparative docking assessment in an early research stage represents a must-use step to minimize fails in molecular modeling. This chapter describes how to perform a docking assessment, using freely available tools, in a semiautomated fashion.

Key words

Drug design Drug discovery Molecular docking Molecular modeling Docking assessment Structure-based drug design (SBDD) 



F.B. thanks Prof. Garland R. Marshall (Washington University School of Medicine in St. Louis, MO) for supporting and funding the design and development of the Clusterizer-DockAccessor protocol; Dr. Chris M. W. Ho (Drug Design Methodologies, LLC, St. Louis, MO) and Ms. Mariama Jaiteh (Uppsala University, Uppsala, Sweden) for providing insightful comments.


  1. 1.
    Persch E, Dumele O, Diederich F (2015) Molecular recognition in chemical and biological systems. Angew Chem Int Ed Eng 54(11):3290–3327. CrossRefGoogle Scholar
  2. 2.
    Yu W, MacKerell AD Jr (2017) Computer-aided drug design methods. Methods Mol Biol 1520:85–106. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Tang YT, Marshall GR (2011) Virtual screening for lead discovery. Methods Mol Biol 716:1–22. CrossRefPubMedGoogle Scholar
  4. 4.
    Ballante F, Ragno R (2012) 3-D QSAutogrid/R: an alternative procedure to build 3-D QSAR models. Methodologies and applications. J Chem Inf Model 52(6):1674–1685. CrossRefPubMedGoogle Scholar
  5. 5.
    Ballante F, Reddy DR, Zhou NJ et al (2017) Structural insights of SmKDAC8 inhibitors: targeting schistosoma epigenetics through a combined structure-based 3D QSAR, in vitro and synthesis strategy. Bioorg Med Chem 25(7):2105–2132. CrossRefPubMedGoogle Scholar
  6. 6.
    Kubinyi H (1993) 3D QSAR in drug design. Volume 1: theory methods and applications. Three-dimensional quantitative structure activity relationships, Vol. 1. Springer, BerlinGoogle Scholar
  7. 7.
    Oprea TI, Waller CL (1997) Theoretical and practical aspects of three-dimensional quantitative structure-activity relationships. In: Reviews in computational chemistry. Wiley, Hoboken, NJ, pp 127–182. CrossRefGoogle Scholar
  8. 8.
    Bursulaya BD, Totrov M, Abagyan R et al (2003) Comparative study of several algorithms for flexible ligand docking. J Comp Aided Molec Design 17(11):755–763. CrossRefGoogle Scholar
  9. 9.
    Stahl M (2000) Modifications of the scoring function in FlexX for virtual screening applications. Perspect Drug Discov Design 20(1):83–98. CrossRefGoogle Scholar
  10. 10.
    Wang R, Lu Y, Fang X et al (2004) An extensive test of 14 scoring functions using the PDBbind refined set of 800 protein-ligand complexes. J Chem Inf Comput Sci 44(6):2114–2125. CrossRefPubMedGoogle Scholar
  11. 11.
    Reddy DR, Ballante F, Zhou NJ et al (2017) Design and synthesis of benzodiazepine analogs as isoform-selective human lysine deacetylase inhibitors. Eur J Med Chem 127:531–553. CrossRefPubMedGoogle Scholar
  12. 12.
    Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. CrossRefPubMedGoogle Scholar
  13. 13.
    Morris GM, Huey R, Lindstrom W et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Maignan S, Guilloteau JP, Pouzieux S et al (2000) Crystal structures of human factor Xa complexed with potent inhibitors. J Med Chem 43(17):3226–3232CrossRefPubMedGoogle Scholar
  16. 16.
    Kamata K, Kawamoto H, Honma T et al (1998) Structural basis for chemical inhibition of human blood coagulation factor Xa. Proc Natl Acad Sci U S A 95(12):6630–6635CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Scharer K, Morgenthaler M, Paulini R et al (2005) Quantification of cation-pi interactions in protein-ligand complexes: crystal-structure analysis of Factor Xa bound to a quaternary ammonium ion ligand. Angew Chem Int Ed Eng 44(28):4400–4404. CrossRefGoogle Scholar
  18. 18.
    Watson NS, Brown D, Campbell M et al (2006) Design and synthesis of orally active pyrrolidin-2-one-based factor Xa inhibitors. Bioorg Med Chem Lett 16(14):3784–3788. CrossRefPubMedGoogle Scholar
  19. 19.
    Pinto DJ, Orwat MJ, Quan ML et al (2006) 1-[3-Aminobenzisoxazol-5’-yl]-3-trifluoromethyl-6-[2’-(3-(R)-hydroxy-N-pyrrolidin yl)methyl-[1,1’]-biphen-4-yl]-1,4,5,6-tetrahydropyrazolo-[3,4-c]-pyridin-7-one (BMS-740808) a highly potent, selective, efficacious, and orally bioavailable inhibitor of blood coagulation factor Xa. Bioorg Med Chem Lett 16(15):4141–4147. CrossRefPubMedGoogle Scholar
  20. 20.
    Ballante F, Marshall GR (2016) An automated strategy for binding-pose selection and docking assessment in structure-based drug design. J Chem Inf Model 56(1):54–72. CrossRefPubMedGoogle Scholar
  21. 21.
    Allen WJ, Balius TE, Mukherjee S et al (2015) DOCK 6: Impact of new features and current docking performance. J Comput Chem 36(15):1132–1156. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    O’Boyle NM, Banck M, James CA et al (2011) Open Babel: an open chemical toolbox. Aust J Chem 3:33. CrossRefGoogle Scholar
  23. 23.
    The Open Babel Package. 2.4.1 Accessed June 2017. edn.
  24. 24.
    Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28(1):235–242CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSaint LouisUSA
  2. 2.Department of Cell and Molecular BiologyUppsala Biomedicinska Centrum BMC, Uppsala UniversityUppsalaSweden

Personalised recommendations