In Silico Drug Design: Non-peptide Mimetics for the Immunotherapy of Multiple Sclerosis

  • Haralambos Tzoupis
  • Theodore TseliosEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1824)


Advances in theoretical chemistry have led to the development of various robust computational techniques employed in drug design. Pharmacophore modeling, molecular docking, and molecular dynamics (MD) simulations have been extensively applied, separately or in combination, in the design of potent molecules. The techniques involve the identification of a potential drug target (e.g., protein) and its subsequent characterization. The next step in the process comprises the development of a map describing the interaction patterns between the target molecule and its natural substrate. Once these key features are identified, it is possible to explore the map and screen large databases of molecules to identify potential drug candidates for further refinement.

Multiple sclerosis (MS) is an autoimmune disease where the immune system attacks the myelin sheath of nerve cells. The process involves the activation of encephalitogenic T cells via the formation of the trimolecular complex between the human leukocyte antigen (HLA), an immunodominant epitope of myelin proteins, and the T-cell receptor (TCR). Herein, the process for rational design and development of altered peptide ligands (APLs) and non-peptide mimetics against MS is described through the utilization of computational methods.

Key words

Pharmacophore modeling Molecular dynamics Docking Multiple sclerosis Peptide mimetics 


  1. 1.
    Sospedra M, Martin R (2005) Immunology of multiple sclerosis. Annu Rev Immunol 23:683–747. CrossRefPubMedGoogle Scholar
  2. 2.
    Mouzaki A, Rodi M, Dimisianos N et al (2015) Immune parameters that distinguish multiple sclerosis patients from patients with other neurological disorders at presentation. PLoS One 10(8):e0135434. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ben-Nun A, Kerlero de Rosbo N, Kaushansky N et al (2006) Anatomy of T cell autoimmunity to myelin oligodendrocyte glycoprotein (MOG): prime role of MOG44F in selection and control of MOG-reactive T cells in H-2b mice. Eur J Immunol 36(2):478–493. CrossRefPubMedGoogle Scholar
  4. 4.
    Moise L, Beseme S, Tassone R et al (2016) T cell epitope redundancy: cross-conservation of the TCR face between pathogens and self and its implications for vaccines and auto-immunity. Exp Rev Vaccines 15(5):607–617. CrossRefGoogle Scholar
  5. 5.
    Shahrizaila N, Yuki N (2011) Guillain-barre syndrome animal model: the first proof of molecular mimicry in human autoimmune disorder. J Biomed Biotechnol 2011:829129. CrossRefPubMedGoogle Scholar
  6. 6.
    Wucherpfennig KW, Catz I, Hausmann S et al (1997) Recognition of the immunodominant myelin basic protein peptide by autoantibodies and HLA-DR2-restricted T cell clones from multiple sclerosis patients—Identity of key contact residues in the B-cell and T-cell epitopes. J Clin Invest 100(5):1114–1122. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Martin R, Howell MD, Jaraquemada D et al (1991) A myelin basic protein peptide is recognized by cytotoxic t cells in the context of four HLA-DR types associated with multiple sclerosis. J Exp Med 173(1):19–24CrossRefPubMedGoogle Scholar
  8. 8.
    Pacini G, Ieronymaki M, Nuti F et al (2016) Epitope mapping of anti-myelin oligodendrocyte glycoprotein (MOG) antibodies in a mouse model of multiple sclerosis: microwave-assisted synthesis of the peptide antigens and ELISA screening. J Pept Sci 22(1):52–58. CrossRefPubMedGoogle Scholar
  9. 9.
    Greer JM, Sobel RA, Sette A et al (1996) Immunogenic and encephalitogenic epitope clusters of myelin proteolipid protein. J Immunol 156(1):371–379PubMedGoogle Scholar
  10. 10.
    Mantzourani ED, Platts JA, Brancale A et al (2007) Molecular dynamics at the receptor level of immunodominant myelin basic protein epitope 87–99 implicated in multiple sclerosis and its antagonists altered peptide ligands: triggering of immune response. J Mol Graph Model 26(2):471–481. CrossRefPubMedGoogle Scholar
  11. 11.
    Spyranti Z, Dalkas GA, Spyroulias GA et al (2007) Putative bioactive conformations of amide linked cyclic myelin basic protein peptide analogues associated with experimental autoimmune encephalomyelitis. J Med Chem 50(24):6039–6047. CrossRefPubMedGoogle Scholar
  12. 12.
    Yannakakis MP, Tzoupis H, Michailidou E et al (2016) Molecular dynamics at the receptor level of immunodominant myelin oligodendrocyte glycoprotein 35-55 epitope implicated in multiple sclerosis. J Mol Graph Model 68:78–86. CrossRefPubMedGoogle Scholar
  13. 13.
    Matsoukas J, Apostolopoulos V, Kalbacher H et al (2005) Design and synthesis of a novel potent myelin basic protein epitope 87-99 cyclic analogue: enhanced stability and biological properties of mimics render them a potentially new class of immunomodulators. J Med Chem 48(5):1470–1480. CrossRefPubMedGoogle Scholar
  14. 14.
    Hahn M, Nicholson MJ, Pyrdol J et al (2005) Unconventional topology of self peptide-major histocompatibility complex binding by a human autoimmune T cell receptor. Nat Immunol 6(5):490–496. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Molecular Operating Environment (MOE), 2013.08 (2017). Chemical Computing Group Inc, 1010 Sherbooke St West, Suite #910, Montreal, QC, Canada, H3A 2R7Google Scholar
  17. 17.
    Sterling T, Irwin JJ (2015) ZINC 15—ligand discovery for everyone. J Chem Inf Model 55(11):2324–2337. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Case DA, Cerutti DS, Cheatham TE et al (2017) AMBER 2017. University of California, San FranciscoGoogle Scholar
  19. 19.
    Cornell WDCP, Bayly CI, Gould IR et al (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197CrossRefGoogle Scholar
  20. 20.
    Jensen JH, Li H, Robertson AD et al (2005) Prediction and rationalization of protein pKa values using QM and QM/MM methods. J Phys Chem A 109(30):6634–6643. CrossRefPubMedGoogle Scholar
  21. 21.
    Li H, Robertson AD, Jensen JH (2005) Very fast empirical prediction and rationalization of protein pKa values. Proteins 61(4):704–721. CrossRefPubMedGoogle Scholar
  22. 22.
    Yannakakis MP, Simal C, Tzoupis H et al (2017) Design and synthesis of non-peptide mimetics mapping the immunodominant myelin basic protein (MBP83-96) epitope to function as T-cell receptor antagonists. Int J Mol Sci 18(6):pii: E1215. CrossRefGoogle Scholar
  23. 23.
    Laimou D, Lazoura E, Troganis AN et al (2011) Conformational studies of immunodominant myelin basic protein 1–11 analogues using NMR and molecular modeling. J Comput Aided Mol Des 25(11):1019–1032. CrossRefPubMedGoogle Scholar
  24. 24.
    Ntountaniotis D, Vanioti M, Kordopati GG et al (2017) A combined NMR and molecular dynamics simulation study to determine the conformational properties of rat/mouse 35-55 myelin oligodendrocyte glycoprotein epitope implicated in the induction of experimental autoimmune encephalomyelitis. J Biomol Struct Dyn 35(7):1559–1567. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of PatrasPatrasGreece

Personalised recommendations