Skip to main content

Exploring Polypharmacology in Drug Design

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1824))

Abstract

Nowadays it is widely accepted that one compound can be able to hit several targets at once. This “magic shotgun” approach for drug development properly describes the mechanism of biomolecular recognition. The need to take into account the polypharmacology in structure-based drug design has led to the development of several computational tools. Here we present a computational protocol to identify promising compounds against several biological targets, a protocol known as inverse docking.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ehrlich P (1878) Beiträge zur theorie und praxis der histologischen färbung. Leipzig University, Leipzig

    Google Scholar 

  2. Ehrlich P (1897) Die wertbemessung des diphterieheilserums und deren theoretische grundlagen. Klinisches Jahrbuch 6:299–326

    Google Scholar 

  3. Strebhardt K, Ullrich A (2008) Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer 8:473–480

    Article  CAS  PubMed  Google Scholar 

  4. Medina-Franco JL, Giulianotti MA, Welmaker GS et al (2013) Shifting from the single to the multitarget paradigm in drug discovery. Drug Discov Today 18(9–10):495–501. https://doi.org/10.1016/j.drudis.2013.01.008

    Article  PubMed  PubMed Central  Google Scholar 

  5. AbdulHameed MDM, Chaudhury S, Singh N et al (2012) Exploring Polypharmacology using a ROCS-based target fishing approach. J Chem Inf Model 52(2):492–505. https://doi.org/10.1021/ci2003544

    Article  CAS  PubMed  Google Scholar 

  6. Hay M, Thomas DW, Craighead JL et al (2014) Clinical development success rates for investigational drugs. Nature Biotechnol 32:40–51

    Article  CAS  Google Scholar 

  7. Waring MJ, Arrowsmith J, Leach AR et al (2015) An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov 14(7):475–486. https://doi.org/10.1038/nrd4609

    Article  CAS  PubMed  Google Scholar 

  8. Zimmermann GR, Lehar J, Keith CT (2007) Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discov Today 12(1–2):34–42. https://doi.org/10.1016/j.drudis.2006.11.008

    Article  CAS  PubMed  Google Scholar 

  9. Roth BL, Sheffler DJ, Kroeze WK (2004) Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discov 3:353–359

    Article  CAS  PubMed  Google Scholar 

  10. Peters J-U (2013) Polypharmacology – Foe or friend? J Med Chem 56(22):8955–8971. https://doi.org/10.1021/jm400856t

    Article  CAS  PubMed  Google Scholar 

  11. Ye H, Liu Q, Wei J (2014) Construction of drug network based on side effects and its application for drug repositioning. PLoS One 9(2):e87864. https://doi.org/10.1371/journal.pone.0087864.t001

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chen YZ, Zhi DG (2001) Ligand–protein inverse docking and its potential use in the computer search of protein targets of a small molecule. Proteins 43:217–226

    Article  CAS  PubMed  Google Scholar 

  13. Zahler S, Tietze S, Totzke F et al (2007) Inverse in silico screening for identification of kinase inhibitor targets. Chem Biol 14(11):1207–1214. https://doi.org/10.1016/j.chembiol.2007.10.010

    Article  CAS  PubMed  Google Scholar 

  14. Grinter SZ, Liang Y, Huang SY et al (2011) An inverse docking approach for identifying new potential anti-cancer targets. J Mol Graph Model 29(6):795–799. https://doi.org/10.1016/j.jmgm.2011.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xie L, Xie L, Bourne PE (2011) Structure-based systems biology for analyzing off-target binding. Curr Opin Struct Biol 21(2):189–199. https://doi.org/10.1016/j.sbi.2011.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang W, Zhou X, He W et al (2012) The interprotein scoring noises in glide docking scores. Proteins 80(1):169–183. https://doi.org/10.1002/prot.23173

    Article  CAS  PubMed  Google Scholar 

  17. Eric S, Ke S, Barata T et al (2012) Target fishing and docking studies of the novel derivatives of aryl-aminopyridines with potential anticancer activity. Bioorg Med Chem 20(17):5220–5228. https://doi.org/10.1016/j.bmc.2012.06.051

    Article  CAS  PubMed  Google Scholar 

  18. Saenz-Méndez P, Eriksson M, Eriksson LA (2017) Ligand selectivity between the ADP-Ribosylating toxins: an inverse-docking study for multitarget drug discovery. ACS Omega 2(4):1710–1719. https://doi.org/10.1021/acsomega.7b00010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  CAS  PubMed  Google Scholar 

  20. DOCK 6.7 (2015) University of California San Francisco. http://dock.compbio.ucsf.edu/

  21. Lang PT, Brozell SR, Mukherjee S et al (2009) DOCK 6: combining techniques to model RNA-small molecule complexes. RNA 15(6):1219–1230. https://doi.org/10.1261/rna.1563609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Protein Data Bank. http://www.rcsb.org/pdb/home/home.do

  23. Li M, Dyda F, Benhar I et al (1996) Crystal structure of the catalytic domain of Pseudomonas exotoxin a complexed with a nicotinamide adenine dinucleotide analog: implications for the activation process and for ADP ribosylation. Proc Natl Acad Sci U S A 93:6902–6906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Weiss MS, Blanke SR, Collier RJ et al (1995) Structure of the isolated catalytic domain of diphtheria toxin. Biochemistry 34:773–781

    Article  CAS  PubMed  Google Scholar 

  25. Jorgensen R, Purdy AE, Fieldhouse RJ et al (2008) Cholix toxin, a novel ADP-ribosylating factor from vibrio cholerae. J Biol Chem 283(16):10671–10678. https://doi.org/10.1074/jbc.M710008200

    Article  CAS  PubMed  Google Scholar 

  26. Jakalian A, Bush BL, Jack DB et al (2000) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method. J Comput Chem 21(2):132–146

    Article  CAS  Google Scholar 

  27. Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem 23(16):1623–1641. https://doi.org/10.1002/jcc.10128

    Article  CAS  PubMed  Google Scholar 

  28. Wang J, Wang W, Kollman PA et al (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Mod 25(2):247–260. https://doi.org/10.1016/j.jmgm.2005.12.005

    Article  CAS  Google Scholar 

  29. Irwin JJ, Sterling T, Mysinger MM et al (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52(7):1757–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Richards FM (1977) Areas, volumes, packing, and protein structure. Ann Rev Biophys Bioeng 6:151–176

    Article  CAS  Google Scholar 

  31. Kuntz ID, Blaney JM, Oatley SJ et al (1982) A geometric approach to macromolecule-ligand interactions. J Mol Biol 161:269–288

    Article  CAS  PubMed  Google Scholar 

  32. Vigers GPA, Rizzi JP (2004) Multiple active site corrections for docking and virtual screening. J Med Chem 47:80–89

    Article  CAS  PubMed  Google Scholar 

  33. Maier JA, Martinez C, Kasavajhala K et al (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11(8):3696–3713. https://doi.org/10.1021/acs.jctc.5b00255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Feinstein WP, Brylinski M (2015) Calculating an optimal box size for ligand docking and virtual screening against experimental and predicted binding pockets. J Cheminform 7(1):1–10. https://doi.org/10.1186/s13321-015-0067-5

    Article  CAS  Google Scholar 

  35. Lauro G, Romano A, Riccio R et al (2011) Inverse virtual screening of antitumor targets: pilot study on a small database of natural bioactive compounds. J Nat Prod 74(6):1401–1407. https://doi.org/10.1021/np100935s

    Article  CAS  PubMed  Google Scholar 

  36. Lauro G, Masullo M, Piacente S et al (2012) Inverse virtual screening allows the discovery of the biological activity of natural compounds. Bioorg Med Chem 20(11):3596–3602. https://doi.org/10.1016/j.bmc.2012.03.072

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by the People Program (Marie Curie Actions) of the European Union’s Seventh Framework Program (FP7/2007–2013) under REA grant agreement N° 608746. We gratefully acknowledge funding from the Swedish Research Council and the Faculty of Science at the University of Gothenburg. We also acknowledge the generous allocation of computer time at the C3SE supercomputing center via a grant from the Swedish National Infrastructure for Computing (SNIC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Saenz-Méndez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Saenz-Méndez, P., Eriksson, L.A. (2018). Exploring Polypharmacology in Drug Design. In: Mavromoustakos, T., Kellici, T. (eds) Rational Drug Design. Methods in Molecular Biology, vol 1824. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8630-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8630-9_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8629-3

  • Online ISBN: 978-1-4939-8630-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics