Advertisement

MicroRNA Analysis Using the Quantitative Real-Time PCR Reaction

  • Marta Kotlarek
  • Anna Kubiak
  • Krystian Jażdżewski
  • Anna WójcickaEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1823)

Abstract

The analysis of microRNA expression patterns provides new insights into numerous cellular processes and their aberrances in diseases. Despite its potential pitfalls, the quantitative real-time polymerase chain reaction (qPCR) is the most commonly used tool for microRNA profiling. The method requires extraction and quality analysis of RNA, which is further reverse transcribed using specific primers and used as a template in a qPCR reaction. All these elements have been addressed in this chapter.

Keywords

microRNA identification microRNA quantification TaqMan probe qPCR Stem-loop primer RNA extraction FFPE samples Serum samples 

References

  1. 1.
    O’Connor L, Glynn B (2010) Recent advances in the development of nucleic acid diagnostics. Expert Rev Med Devices 7(4):529–539.  https://doi.org/10.1586/erd.10.22 CrossRefPubMedGoogle Scholar
  2. 2.
    Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20):e179.  https://doi.org/10.1093/nar/gni178 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kolanowska M, Wojcicka A, Kubiak A, Swierniak M, Kotlarek M, Maciag M et al (2017) Functional analysis of a novel, thyroglobulin-embedded microRNA gene deregulated in papillary thyroid carcinoma. Sci Rep 7(1):9942.  https://doi.org/10.1038/s41598-017-10318-w CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lee LW, Zhang S, Etheridge A, Ma L, Martin D, Galas D et al (2010) Complexity of the microRNA repertoire revealed by next-generation sequencing. RNA 16(11):2170–2180.  https://doi.org/10.1261/rna.2225110 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cloonan N, Wani S, Xu Q, Gu J, Lea K, Heater S et al (2011) MicroRNAs and their isomiRs function cooperatively to target common biological pathways. Genome Biol 12(12):R126.  https://doi.org/10.1186/gb-2011-12-12-r126 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Chugh P, Dittmer DP (2012) Potential pitfalls in microRNA profiling. Wiley Interdiscip Rev RNA 3(5):601–616.  https://doi.org/10.1002/wrna.1120 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wojcicka A, Swierniak M, Kornasiewicz O, Gierlikowski W, Maciag M, Kolanowska M et al (2014) Next generation sequencing reveals microRNA isoforms in liver cirrhosis and hepatocellular carcinoma. Int J Biochem Cell Biol 53:208–217.  https://doi.org/10.1016/j.biocel.2014.05.020 CrossRefPubMedGoogle Scholar
  8. 8.
    Jazdzewski K, Liyanarachchi S, Swierniak M, Pachucki J, Ringel MD, Jarzab B et al (2009) Polymorphic mature microRNAs from passenger strand of pre-miR-146a contribute to thyroid cancer. Proc Natl Acad Sci U S A 106(5):1502–1505.  https://doi.org/10.1073/pnas.0812591106 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Liu X, Zhang L, Cheng K, Wang X, Ren G, Xie P (2014) Identification of suitable plasma-based reference genes for miRNAome analysis of major depressive disorder. J Affect Disord 163(Supplement C):133–139.  https://doi.org/10.1016/j.jad.2013.12.035 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Marta Kotlarek
    • 1
    • 2
  • Anna Kubiak
    • 1
    • 2
    • 3
  • Krystian Jażdżewski
    • 1
    • 2
    • 3
  • Anna Wójcicka
    • 1
    • 2
    Email author
  1. 1.Warsaw Genomics INCWarsawPoland
  2. 2.Genomic MedicineMedical University of WarsawWarsawPoland
  3. 3.Centre of New Technologies University of WarsawWarsawPoland

Personalised recommendations