Skip to main content

High-Quality Overlapping Paired-End Reads for the Detection of A-to-I Editing on Small RNA

  • Protocol
  • First Online:
miRNA Biogenesis

Abstract

Paired-end RNA sequencing (RNA-seq) is usually applied to the quantification of long transcripts such as messenger or long non-coding RNAs, in which case overlapping pairs are discarded. In contrast, RNA-seq on short RNAs (≤ 200 nt) is typically carried out in single-end mode, as the additional cost associated with paired-end would only translate into redundant sequence information. Here, we exploit paired-end sequencing of short RNAs as a strategy to filter out sequencing errors and apply this method to the identification of adenosine-to-inosine (A-to-I) RNA editing events on human precursor microRNA (pre-miRNA) and mature miRNA. Combined with RNA immunoprecipitation sequencing (RIP-seq) of A-to-I RNA editing enzymes, this method takes full advantage of deep sequencing technology to identify RNA editing sites with unprecedented resolution in terms of editing efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ihle MA, Fassunke J, König K, Grünewald I, Schlaak M, Kreuzberg N, Tietze L, Schildhaus HU, Büttner R, Merkelbach-Bruse S (2014) Comparison of high resolution melting analysis, pyrosequencing, next generation sequencing and immunohistochemistry to conventional sanger sequencing for the detection of p.V600E and non-p.V600E BRAF mutations. BMC Cancer 14:13

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kawahara Y, Zinshteyn B, Sethupathy P, Iizasa H, Hatzigeorgiou AG, Nishikura K (2007) Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315(5815):1137–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kume H, Hino K, Galipon J, Ui-Tei K (2014) A-to-I editing in the miRNA seed region regulates target mRNA selection and silencing efficiency. Nucleic Acids Res 42:10050–10060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li JB*, Levanon EY*, Yoon JK, Aach J, Xie B, LeProust E, Zhang K, Gao Y, Church GM (2009) Genome-wide identification of human RNA editing sites by massively parallel DNA capturing and sequencing. Science 324:1210–1213 *equal contribution

    Article  CAS  PubMed  Google Scholar 

  5. Bahn JH, Lee JH, Li G, Greer C, Peng G, Xiao X (2012) Accurate identification of A-to-I RNA editing in human by transcriptome sequencing. Genome Res 22:142–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chepelev I (2012) Detection of RNA editing events in human cells using high-throughput sequencing. Methods Mol Biol 815:91–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Galipon J, Ishii R, Suzuki Y, Tomita M, Ui-Tei K (2017) Differential binding of three major human ADAR isoforms to coding and long non-coding transcripts. Genes (Basel) 8(2):68

    Article  CAS  Google Scholar 

  8. Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M, Jungkamp AC, Munschauer M, Ulrich A, Wardle GS, Scott Dewell S, Zavolan Z, Tuschl T (2010) J Vis Exp 41:2034–2039

    Google Scholar 

  9. Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460:479–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Weeks KM, Crothers DM (1993) Major groove accessibility of RNA. Science 261:1574–1577

    Article  CAS  PubMed  Google Scholar 

  11. Liu ZR, Sargueil B, Smith CW (2000) Methylene blue-mediated cross-linking of proteins to double-stranded RNA. Methods Enzymol 318:22–33

    Article  CAS  PubMed  Google Scholar 

  12. Tuite EM, Kelly JM (1993) Photochemical interactions of methylene blue and analogues with DNA and other biological substrates. J Photochem Photobiol B 21:103–124

    Article  CAS  PubMed  Google Scholar 

  13. Wu D, Lamm AT, Fire AZ (2011) Competition between ADAR and RNAi pathways for an extensive class of RNA targets. Nat Struct Mol Biol 18:1094–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 1000 Genomes Project Consortium, Abecasis GR, Auton A, Brooks LD, MA DP, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491:56–65

    Article  CAS  Google Scholar 

  15. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29:308–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. The International HapMap Consortium (2003) The international HapMap project. Nature 426:789–796

    Article  CAS  Google Scholar 

  17. Gong J, Liu C, Liu W, Wu Y, Ma Z, Chen H, Guo AY 2015 An update of miRNASNP database for better SNP selection by GWAS data, miRNA expression and online tools. Database (Oxford) 2015:bav029

    Google Scholar 

  18. Han M, Zheng Y (2013) Comprehensive analysis of single nucleotide polymorphisms in human microRNAs. PLoS One 8:e78028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kawahara Y, Megraw M, Kreider E, Iizasa H, Valente L, Hatzigeorgiou AG, Nishikura K (2008) Frequency and fate of microRNA editing in human brain. Nucleic Acids Res 36:5270–5280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Luciano DJ, Mirsky H, Vendetti NJ, Maas S (2004) RNA editing of a miRNA precursor. RNA 10:1174–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. García-López J, Hourcade Jde D, Del Mazo J (2013) Reprogramming of microRNAs by adenosine-to-inosine editing and the selective elimination of edited microRNA precursors in mouse oocytes and preimplantation embryos. Nucleic Acids Res 41:5483–5493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ekdahl Y, Farahani HS, Behm M, Lagergren J, Öhman M (2012) A-to-I editing of microRNAs in the mammalian brain increases during development. Genome Res 22:1477–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Alon S, Mor E, Vigneault F, Church GM, Locatelli F, Galeano F, Gallo A, Shomron N, Eisenberg E (2012) Systematic identification of edited microRNAs in the human brain. Genome Res 22:1533–1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ramaswami G, Li JB (2014) RADAR: a rigorously annotated database of A-to-I RNA editing. Nucleic Acids Res 42(Database issue):D109–D113

    Article  CAS  PubMed  Google Scholar 

  25. Warnefors M, Liechti A, Halbert J, Valloton D, Kaessmann H (2014) Conserved microRNA editing in mammalian evolution, development and disease. Genome Biol 15:R83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang Y, Xu X, Yu S, Jeong KJ, Zhou Z, Han L, Tsang YH, Li J, Chen H, Mangala LS, Yuan Y, Eterovic AK, Lu Y, Sood AK, Scott KL, Mills GB, Liang H (2017) Systematic characterization of A-to-I RNA editing hotspots in microRNAs across human cancers. Genome Res 27(7):1112-1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tomaselli S, Galeano F, Alon S, Raho S, Galardi S, Polito V, Presutti C, Vincenti S, Eisenberg E, Locatelli F, Gallo A (2015) Modulation of microRNA editing, expression and processing by ADAR2 deaminase in glioblastoma. Genome Biol 16(1):5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bu D, Yu K, Sun S, Xie C, Skogerbø G, Miao R, Xiao H, Liao Q, Luo H, Zhao G, Zhao H, Liu Z, Liu C, Chen R, Zhao Y (2012) NONCODE v3.0: integrative annotation of long noncoding RNAs. Nucleic Acids Res 40:D210–D215

    Article  CAS  PubMed  Google Scholar 

  30. Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39:D152–D157

    Article  CAS  PubMed  Google Scholar 

  31. Neilson JR, Sandberg R (2010) Heterogeneity in mammalian RNA 3′ end formation. Exp Cell Res 316:1357–1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Galipon J, Ishiguro S, Tomita M, Ui-Tei K (2016) Detection of A-to-I RNA editing by RNA-Seq. NGS application, Handbook of RNA-Seq experiment, 113–117, Yodosha.

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan to KU-T. Keio University Institute for Advanced Bioscience affiliates were supported by research funds from the Yamagata prefectural government and the City of Tsuruoka.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumiko Ui-Tei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Galipon, J. et al. (2018). High-Quality Overlapping Paired-End Reads for the Detection of A-to-I Editing on Small RNA. In: Ørom, U. (eds) miRNA Biogenesis. Methods in Molecular Biology, vol 1823. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8624-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8624-8_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-8623-1

  • Online ISBN: 978-1-4939-8624-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics