Skip to main content
Book cover

Rho GTPases pp 131–140Cite as

An In Vitro Kinase Assay to Assess Rac1 Phosphorylation by ERK

  • Protocol
  • First Online:
  • 1389 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1821))

Abstract

Recent findings suggest that phosphorylation might further contribute to the tight regulation of Rho GTPases. Interestingly, sequence analysis of Rac1 shows that T108 within the 106PNTP109 motif of Rac1 is likely an ERK phosphorylation site and Rac1 also has an ERK docking site 183KKRKRKCLLL192 (D-site) at the C-terminus. Protein phosphorylation could be assayed by many different methods. Here, we describe an in vitro kinase assay we used to assess Rac1 phosphorylation by ERK. Rac1 phosphorylation is detected based on the transfer of a radiolabeled phosphate from ATP to Rac1 by the phosphotransferase activity of the kinase EKR. This in vitro kinase assay uses commercially available purified active ERK. Substrate Rac1 was generated and purified as a glutathione S-transferase (GST) fusion protein. [γ-32P]ATP is used to radiolabel Rac1. Phosphorylation of Rac1 is viewed by autoradiography.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Burridge K, Wennerberg K (2004) Rho and Rac take center stage. Cell 116:167–179

    Article  CAS  PubMed  Google Scholar 

  2. Nobes CD, Hall A (1995) Rho, Rac and Cdc42 GTPases: regulators of actin structures, cell adhesion and motility. Biochem Soc Trans 23:456–459

    Article  CAS  PubMed  Google Scholar 

  3. Benitah S, Valeron P, van Aelst L, Marshall C, Lacal J (2004) Rho GTPases in human cancer: an unresolved link to upstream and downstream transcriptional regulation. Biochim Biophys Acta 1705:121–132

    PubMed  CAS  Google Scholar 

  4. van Aelst L, D’Souza-Schorey C (1997) Rho GTPases and signaling networks. Genes Dev 11:2295–2322

    Article  PubMed  Google Scholar 

  5. Aznar S, Lacal J (2001) Rho signals to cell growth and apoptosis. Cancer Lett 165:1–10

    Article  CAS  PubMed  Google Scholar 

  6. Dvorsky R, Ahmadian MR (2004) Always look on the bright site of Rho: structural implications for a conserved intermolecular interface. EMBO Rep 5:1130–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Forget M, Desrosiers R, Gingras D, Beliveau R (2002) Phosphorylation states of Cdc42 and RhoA regulate their interactions with Rho GDP dissociation inhibitor and their extraction from biological membranes. Biochem J 361:243–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ellerbroek S, Wennerberg K, Burridge K (2003) Serine phosphorylation negatively regulates RhoA in vivo. J Biol Chem 278:19023–19031

    Article  CAS  PubMed  Google Scholar 

  9. Liu M, Bi F, Zhou X, Zheng Y (2012) Rho GTPase regulation by miRNAs and covalent modifications. Trends Cell Biol 22:365–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mettouchi A, Lemichez E (2012) Ubiquitylation of active Rac1 by the E3 ubiquitin-ligase Hace1. Small GTPase 3:102–106

    Article  Google Scholar 

  11. Navarro-Lerida I, Sanchez-Perales S, Calvo M, Rentero C, Zheng Y, Enrich C, Del Pozo MA (2012) A palmitoylation switch mechanism regulates Rac1 function and membrane organization. EMBO J 31:534–551

    Article  CAS  PubMed  Google Scholar 

  12. Loirand G, Guilluy C, Pacaud P (2006) Regulation of Rho proteins by phosphorylation in the cardiovascular system. Trends Cariovasc Med 16:199–204

    Article  CAS  Google Scholar 

  13. Roberts PJ, Der CJ (2007) Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26:3291–3310

    Article  CAS  Google Scholar 

  14. Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141:1117–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Songyang Z, Lu KP, Kwon YT, Tsai LH, Filhol O, Cochet C, Brickey DA, Soderling TR, Bartleson C, Graves DJ, DeMaggio AJ, Hoekstra MF, Blenis J, Hunter T, Cantley LC (1996) A structural basis for substrate specificities of protein ser/thr kinases: Primary sequence preference of casein kinases I and II, NIMA, phosphorylase kinase, calmodulin-dependent kinase II, CDK5, and ERK1. Mol Cell Biol 16:6486–6493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sharrocks A, Yang S, Galanis A (2000) Docking domains and substrate-specificity determination for MAP kinases. Trends Biochem Sci 25:448–453

    Article  CAS  PubMed  Google Scholar 

  17. Enslen H, Davis R (2001) Regulation of MAP kinases by docking domains. Biol Cell 93:5–14

    Article  CAS  PubMed  Google Scholar 

  18. Tong J, Li L, Ballermann B, Wang Z (2016) Phosphorylation and activation of RhoA by ERK in response to epidermal growth factor stimulation. PLoS One 11:e0147103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Johnson SA, Hunter T (2005) Kinomics: methods for deciphering the kinome. Nat Methods 2:17–25

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixiang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Brandwein, D., Tong, J., Li, L., Ballermann, B., Wang, Z. (2018). An In Vitro Kinase Assay to Assess Rac1 Phosphorylation by ERK. In: Rivero, F. (eds) Rho GTPases. Methods in Molecular Biology, vol 1821. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8612-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8612-5_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8611-8

  • Online ISBN: 978-1-4939-8612-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics