Rho GTPases pp 71-85 | Cite as

Parallel High-Resolution Imaging of Leukocyte Chemotaxis Under Agarose with Rho-Family GTPase Biosensors

Part of the Methods in Molecular Biology book series (MIMB, volume 1821)


Neutrophils are key early responders in the innate immune response that use chemotaxis, the directed migration along chemical gradients, to reach sites of infection or inflammation. This process requires integrating inputs from cell surface receptors with the cell’s polarity and motility signaling network, in which highly dynamic and interconnected signaling by Rho-family GTPases plays a central role. To understand this fundamentally important behavior, we describe a high-resolution, under-agarose chemotaxis assay for use with neutrophil-like cell lines (HL-60 or PLB-985) or with primary neutrophils. We also describe how to use optical uncaging of chemoattractants to stimulate cells in this assay. These techniques are compatible with epifluorescence, total internal reflection fluorescence (TIRF), and confocal microscopy. Additionally, we cover how to measure the activities of Rho-family GTPases in this context using Förster resonance energy transfer (FRET)-based biosensors. The specific experimental steps outlined in this chapter include how to (1) set up the under-agarose assay, (2) optically pattern chemoattractant gradients, (3) image cells, and (4) conduct basic image analysis for FRET biosensors.

Key words

Chemotaxis Assay Cell Signaling FRET biosensors Rho GTPases 



We would like to thank the following funding sources for their support of this work. SRC thanks the Sidney Kimmel Foundation for the 2017 Kimmel Scholar Award, and the NIH for the Director’s New Innovator Award DP2-HD-094656. DEN thanks the NIH T32 GM007377 training grant, while GRRB thanks the National Science Foundation Graduate Research Fellowship (Grant Number 1650042) for support.


  1. 1.
    Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13:159–175CrossRefGoogle Scholar
  2. 2.
    Chen L, Janetopoulos C, Huang YE, Iijima M, Borleis J, Devreotes PN (2003) Two phases of actin polymerization display different dependencies on PI(3,4,5)P3 accumulation and have unique roles during chemotaxis. Mol Biol Cell 14:5028–5037CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Parent CA, Devreotes PN (1999) A cell’s sense of direction. Science 284:765–770CrossRefPubMedGoogle Scholar
  4. 4.
    Devreotes P, Janetopoulos C (2003) Eukaryotic chemotaxis: distinctions between directional sensing and polarization. J Biol Chem 278:20445–20448CrossRefPubMedGoogle Scholar
  5. 5.
    Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR (2003) Cell migration: integrating signals from front to back. Science 302:1704–1709CrossRefPubMedGoogle Scholar
  6. 6.
    Nobes CD, Hall A (1995) Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81:53–62CrossRefPubMedGoogle Scholar
  7. 7.
    Yang HW, Collins SR, Meyer T (2016) Locally excitable Cdc42 signals steer cells during chemotaxis. Nat Cell Biol 18:191–201CrossRefPubMedGoogle Scholar
  8. 8.
    Xu J, Wang F, van Keymeulen A, Herzmark P, Straight A, Kelly K, Takuwa Y, Sugimoto N, Mitchison T, Bourne HR (2003) Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell 114:201–214CrossRefPubMedGoogle Scholar
  9. 9.
    Guilluy C, García-Mata R, Burridge K (2011) Rho protein crosstalk: another social network? Trends Cell Biol 21:718–726CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hanna S, El-Sibai M (2013) Signaling networks of rho GTPases in cell motility. Cell Signal 25:1955–1961CrossRefPubMedGoogle Scholar
  11. 11.
    Machacek M, Hodgson L, Welch C, Elliott H, Pertz O, Nalbant P, Abell A, Johnson GL, Hahn KM, Danuser G (2009) Coordination of rho GTPase activities during cell protrusion. Nature 461:99–103CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lämmermann T, Bader BL, Monkley SJ, Worbs T, Wedlich-Söldner R, Hirsch K, Keller M, Förster R, Critchley DR, Fässler R, Sixt M (2008) Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453:51–55CrossRefPubMedGoogle Scholar
  13. 13.
    Lam PY, Huttenlocher A (2013) Interstitial leukocyte migration in vivo. Curr Opin Cell Biol 25:650–658CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Collins SR, Yang HW, Bonger KM, Guignet EG, Wandless TJ, Meyer T (2015) Using light to shape chemical gradients for parallel and automated analysis of chemotaxis. Mol Syst Biol 11:804CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Pirrung MC, Drabik SJ, Ahamed J, Ali H (2000) Caged chemotactic peptides. Bioconjug Chem 11:679–681CrossRefPubMedGoogle Scholar
  16. 16.
    Komatsu N, Aoki K, Yamada M, Yukinaga H, Fujita Y, Kamioka Y, Matsuda M (2011) Development of an optimized backbone of FRET biosensors for kinases and GTPases. Mol Biol Cell 22:4647–4656CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Millius A, Weiner OD (2010) Manipulation of neutrophil-like HL-60 cells for the study of directed cell migration. Methods Mol Biol 591:147–158CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Drexler HG, Dirks WG, Matsuo Y, MacLeod RAF (2003) False leukemia–lymphoma cell lines: an update on over 500 cell lines. Leukemia 17:416–426CrossRefPubMedGoogle Scholar
  19. 19.
    Rincón E, Rocha-Gregg B, and Collins S (2017) A map of gene expression in neutrophil-like cell lines. bioRxiv 204875Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Microbiology and Molecular GeneticsUniversity of California, DavisDavisUSA

Personalised recommendations