Skip to main content

Applying Perturbation Expectation-Maximization to Protein Trajectories of Rho GTPases

  • Protocol
  • First Online:
Rho GTPases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1821))

Abstract

Single-particle tracking (SPT) enables the ability to noninvasively probe the diffusive motions of individual proteins inside living cells at sub-diffraction-limit resolution. The stochastic motions of diffusing Rho GTPases encode information concerning its interactions with binding partners and with its local environment. By identifying Rho GTPases’ diffusive states, insight can thus be gained into the spatiotemporal in vivo biochemistry inside live cells at a single-molecule resolution. Here we present perturbation expectation-maximization (pEM), a computational method which simultaneously analyzes a population of protein trajectories to uncover the system of diffusive behaviors: (1) the number of diffusive states, (2) the properties of each such diffusive state, and (3) the probabilities of each trajectory to a respective diffusive state. We provide a step-by-step guide to pEM and discuss considerations for its practical applications, including pEM’s capabilities and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manley S, Gillette JM, Patterson GH, Shroff H, Hess HF, Betzig E, Lippincott-Schwartz J (2008) High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat Methods 5:155–157

    Article  CAS  PubMed  Google Scholar 

  2. Patterson G, Davidson M, Manley S, Lippincott-Schwartz J (2010) Superresolution imaging using single-molecule localization. Annu Rev Phys Chem 61:345–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mortensen KI, Churchman LS, Spudich JA, Flyvbjerg H (2010) Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nat Methods 7:377–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Savin T, Doyle PS (2005) Static and dynamic errors in particle tracking microrheology. Biophys J 88:623–638

    Article  CAS  PubMed  Google Scholar 

  5. Koo PK, Mochrie SG (2016) Systems-level approach to uncovering diffusive states and their transitions from single-particle trajectories. Phys Rev E 94:052412

    Article  PubMed  Google Scholar 

  6. Berglund AJ (2010) Statistics of camera-based single-particle tracking. Phys Rev E Stat Nonlinear Soft Matter Phys 82:011917

    Article  CAS  Google Scholar 

  7. Koo PK, Weitzman M, Sabanaygam CR, van Golen KL, Mochrie SG (2015) Extracting diffusive states of Rho GTPase in live cells: towards in vivo biochemistry. PLoS Comput Biol 11:e1004297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Koo PK and Mochrie SG (2015) Perturbation Expectation-Maximization MATLAB Code. https://github.com/mochrielab/pEM

  9. Chenouard N, Smal I, de Chaumont F, Maska M, Sbalzarini IF, Gong Y, Cardinale J, Carthel C, Coraluppi S, Winter M, Cohen AR, Godinez WJ, Rohr K, Kalaidzidis Y, Liang L, Duncan J, Shen H, Xu Y, Magnusson KE, Jalden J, Blau HM, Paul-Gilloteaux P, Roudot P, Kervrann C, Waharte F, Tinevez JY, Shorte SL, Willemse J, Celler K, van Wezel GP, Dan HW, Tsai YS, Ortiz de Solorzano C, Olivo-Marin JC, Meijering E (2014) Objective comparison of particle tracking methods. Nat Methods 11:281–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S, Schmid SL, Danuser G (2008) Robust single-particle tracking in live-cell time-lapse sequences. Nat Methods 5:695–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Blair D and Dufresne E (2008) The MATLAB particle tracking code repository. http://site.physics.georgetown.edu/matlab/

  12. Vestergaard CL, Blainey PC, Flyvbjerg H (2014) Optimal estimation of diffusion coefficients from single-particle trajectories. Phys Rev E Stat Nonlinear Soft Matter Phys 89:022726

    Article  CAS  Google Scholar 

  13. Bishop CM (2006) Pattern recognition and machine learning. Springer, New York

    Google Scholar 

  14. Koo PK and Mochrie SG (2016) mleBIC MATLAB Code. https://github.com/mochrielab/mleBIC

  15. Koo PK and Mochrie SG (2016) pEMv2 MATLAB Code. https://github.com/mochrielab/pEMv2

Download references

Acknowledgments

This work was supported by National Science Foundation Grant No. PHY1305509, and by the Raymond and Beverly Sackler Institute for Physical and Engineering Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon G. J. Mochrie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Koo, P.K., Mochrie, S.G.J. (2018). Applying Perturbation Expectation-Maximization to Protein Trajectories of Rho GTPases. In: Rivero, F. (eds) Rho GTPases. Methods in Molecular Biology, vol 1821. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8612-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8612-5_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8611-8

  • Online ISBN: 978-1-4939-8612-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics