Advertisement

Behavioral Assays in the Study of Olfaction: A Practical Guide

  • Fabio Papes
  • Thiago S. Nakahara
  • Antonio P. Camargo
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1820)

Abstract

Olfaction is a fundamental sense in most animal species. In mammals, the olfactory system comprises several subpopulations of sensory neurons located throughout the nasal cavity, which detect a variety of chemostimuli, including odorants, intraspecies and interspecies chemical communication cues. Some of these compounds are important for regulating innate and learned behaviors, and endocrine changes in response to other animals in the environment. With a particular focus on laboratory rodent species, this chapter provides a comprehensive description of the most important behavioral assays used for studying the olfactory system, and is meant to be a practical guide for those who study olfaction-mediated behaviors or who have an interest in deciphering the molecular, cellular, or neural mechanisms through which the sense of smell controls the generation of adaptive behavioral outputs.

Key words

Olfactory behavior Innate behavior Pheromone Odorant 

References

  1. 1.
    Munger SD, Leinders-Zufall T, Zufall F (2009) Subsystem organization of the mammalian sense of smell. Annu Rev Physiol 71:115–140CrossRefPubMedGoogle Scholar
  2. 2.
    Firestein S (2001) How the olfactory system makes sense of scents. Nature 413:211–218CrossRefPubMedGoogle Scholar
  3. 3.
    Papes F, Logan DW, Stowers L (2010) The vomeronasal organ mediates interspecies defensive behaviors through detection of protein pheromone homologs. Cell 141:692–703CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Yang T, Yang CF, Chizari MD et al (2017) Social control of hypothalamus-mediated male aggression. Neuron 95(4):955–970.e4CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Chamero P, Marton TF, Logan DW et al (2007) Identification of protein pheromones that promote aggressive behaviour. Nature 450:899–902CrossRefPubMedGoogle Scholar
  6. 6.
    Kikusui T (2013) Analysis of male aggressive and sexual behavior in mice. Methods Mol Biol 1068:307–318CrossRefPubMedGoogle Scholar
  7. 7.
    Jakubowski M, Terkel J (1982) Infanticide and caretaking in non-lactating Mus musculus: influence of genotype, family group and sex. Anim Behav 30:1029–1035CrossRefGoogle Scholar
  8. 8.
    Kimchi T, Xu J, Dulac C (2007) A functional circuit underlying male sexual behaviour in the female mouse brain. Nature 448:1009–1014CrossRefPubMedGoogle Scholar
  9. 9.
    McCarthy MM, Vom Saal FS (1986) Inhibition of infanticide after mating by wild male house mice. Physiol Behav 36:203–209CrossRefPubMedGoogle Scholar
  10. 10.
    Rangel MJ Jr, Baldo MVC, Canteras NS et al (2016) Evidence of a role for the lateral hypothalamic area juxtadorsomedial region (LHAjd) in defensive behaviors associated with social defeat. Front Syst Neurosci 10:1–12CrossRefGoogle Scholar
  11. 11.
    Rokni D, Hemmelder V, Kapoor V et al (2014) An olfactory cocktail party: figure-ground segregation of odorants in rodents. Nat Neurosci 17:1225–1232CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Qiu Q, Scott A, Scheerer H et al (2014) Automated analyses of innate olfactory behaviors in rodents. PLoS One 9:e93468CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Root CM, Denny CA, Hen R et al (2014) The participation of cortical amygdala in innate, odour-driven behaviour. Nature 515:269–273CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Jones SV, Heldt SA, Davis M et al (2005) Olfactory-mediated fear conditioning in mice: simultaneous measurements of fear-potentiated startle and freezing. Behav Neurosci 119:329–335CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Scott JP (1966) Agonistic behavior of mice and rats: a review. Am Zool 6:683–701CrossRefPubMedGoogle Scholar
  16. 16.
    Rowe FA, Edwards DA (1971) Olfactory bulb removal: influences on the aggressive behaviors of male mice. Physiol Behav 7:889–892CrossRefPubMedGoogle Scholar
  17. 17.
    Stowers L, Holy TE, Meister M et al (2002) Loss of sex discrimination and male-male aggression in mice deficient for TRP2. Science 295:1493–1500CrossRefPubMedGoogle Scholar
  18. 18.
    Logan DW, Marton TF, Stowers L (2008) Species specificity in major urinary proteins by parallel evolution. PLoS One 3:e3280CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Mandiyan VS, Coats JK, Shah NM (2005) Deficits in sexual and aggressive behaviors in Cnga2 mutant mice. Nat Neurosci 8:1660–1662CrossRefPubMedGoogle Scholar
  20. 20.
    Chamero P, Katsoulidou V, Hendrix P et al (2011) G protein G(alpha)o is essential for vomeronasal function and aggressive behavior in mice. Proc Natl Acad Sci U S A 108(31):12898–12903CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Loconto J, Papes F, Chang E et al (2003) Functional expression of murine V2R pheromone receptors involves selective association with the M10 and M1 families of MHC class Ib molecules. Cell 112:607–618CrossRefPubMedGoogle Scholar
  22. 22.
    Leinders-Zufall T, Brennan P, Widmayer P et al (2004) MHC class I peptides as chemosensory signals in the vomeronasal organ. Science 306:1033–1037CrossRefPubMedGoogle Scholar
  23. 23.
    Miczek KA, Maxson SC, Fish EW et al (2001) Aggressive behavioral phenotypes in mice. Behav Brain Res 125:167–181CrossRefPubMedGoogle Scholar
  24. 24.
    Jang H, Bargmann CI (2013) Acute behavioral responses to pheromones in C. elegans (adult behaviors: attraction, repulsion). Methods Mol Biol 1068:285–292CrossRefPubMedGoogle Scholar
  25. 25.
    Grant EC, Mackintosh JH (1963) A comparison of the social postures of some common laboratory rodents. Behaviour 21:246–259CrossRefGoogle Scholar
  26. 26.
    Jones Brain PS (1987) Performances of inbred and outbred laboratory mice in putative tests of aggression. Behav Genet 17:87–96CrossRefPubMedGoogle Scholar
  27. 27.
    Abramov U, Puussaar T, Raud S et al (2008) Behavioural differences between C57BL/6 and 129S6/SvEv strains are reinforced by environmental enrichment. Neurosci Lett 443:223–227CrossRefPubMedGoogle Scholar
  28. 28.
    Rich TJ, Hurst JL (1999) The competing countermarks hypothesis: reliable assessment of competitive ability by potential mates. Anim Behav 58:1027–1037CrossRefPubMedGoogle Scholar
  29. 29.
    Desjardins C, Maruniak JA, Bronson FH (1973) Social rank in house mice: differentiation revealed by ultraviolet visualization of urinary marking patterns. Science 182:939–941CrossRefPubMedGoogle Scholar
  30. 30.
    Kaur AW, Ackels T, Kuo T-HH et al (2014) Murine pheromone proteins constitute a context-dependent combinatorial code governing multiple social behaviors. Cell 157:676–688CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Arakawa H, Blanchard DC, Arakawa K et al (2008) Scent marking behavior as an odorant communication in mice. Neurosci Biobehav Rev 32(7):1236–1248CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Arakawa H, Arakawa K, Blanchard DC et al (2008) A new test paradigm for social recognition evidenced by urinary scent marking behavior in C57BL/6J mice. Behav Brain Res 190:97–104CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hurst JL (1987) The functions of urine marking in a free-living population of house mice, Mus domesticus Rutty. Anim Behav 35:1433–1442CrossRefGoogle Scholar
  34. 34.
    Ralls K (1971) Mammalian scent marking. Science 171:443–449CrossRefPubMedGoogle Scholar
  35. 35.
    Thiessen D, Rice M (1976) Mammalian scent gland marking and social behavior. Psychol Bull 83:505–539CrossRefPubMedGoogle Scholar
  36. 36.
    Wolff PR, Powell AJ (1984) Urine patterns in mice: an analysis of male/female counter-marking. Anim Behav 32:1185–1191CrossRefGoogle Scholar
  37. 37.
    Logan DW, Brunet LJ, Webb WR et al (2012) Learned recognition of maternal signature odors mediates the first suckling episode in mice. Curr Biol 22:1998–2007CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Wang F, Kessels HW, Hu H (2014) The mouse that roared: neural mechanisms of social hierarchy. Trends Neurosci 37:674–682CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Lindzey G, Winston H, Manosevitz M (1961) Social dominance in inbred mouse strains. Nature 191:474–476CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Holy TE, Guo Z (2005) Ultrasonic songs of male mice. PLoS Biol 3:1–10CrossRefGoogle Scholar
  41. 41.
    Wang Z, Phan T, Storm DR (2011) The type 3 adenylyl cyclase is required for novel object learning and extinction of contextual memory: role of cAMP signaling in primary cilia. J Neurosci 31:5557–5561CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Messeri P, Eleftheriou BE, Oliverio A (1975) Dominance behavior: a phylogenetic analysis in the mouse. Physiol Behav 14:53–58CrossRefPubMedGoogle Scholar
  43. 43.
    Merlot E, Moze E, Bartolomucci A et al (2004) The rank assessed in a food competition test influences subsequent reactivity to immune and social challenges in mice. Brain Behav Immun 18:468–475CrossRefPubMedGoogle Scholar
  44. 44.
    Silverman JL, Yang M, Lord C et al (2010) Behavioural phenotyping assays for mouse models of autism. Nat Rev Neurosci 11(7):490–502CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ryan BC, Young NB, Moy SS et al (2008) Olfactory cues are sufficient to elicit social approach behaviors but not social transmission of food preference in C57BL/6J mice. Behav Brain Res 193:235–242CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Moy SS, Nadler JJ, Perez A (2004) Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Genes Brain Behav 3(5):287–302CrossRefPubMedGoogle Scholar
  47. 47.
    Kaidanovich-beilin O, Lipina T, Vukobradovic I et al (2011) Assessment of social interaction behaviors. J Vis Exp (48):2473Google Scholar
  48. 48.
    Winans SS, Powers JB (1974) Neonatal and two-stage olfactory bulbectomy: effects on male hamster sexual behavior. Behav Biol 10:461–471CrossRefPubMedGoogle Scholar
  49. 49.
    Haga S, Hattori T, Sato T et al (2010) The male mouse pheromone ESP1 enhances female sexual receptive behaviour through a specific vomeronasal receptor. Nature 466:118–122CrossRefPubMedGoogle Scholar
  50. 50.
    Nyby J, Wysocki CJ, Whitney G et al (1977) Pheromonal regulation of male mouse ultrasonic courtship (Mus musculus). Anim Behav 25:333–341CrossRefPubMedGoogle Scholar
  51. 51.
    Leypold BG, Yu CR, Leinders-zufall T et al (2002) Altered sexual and social behaviors in trp2 mutant mice. Proc Natl Acad Sci U S A 99:6376–6381CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Burns-Cusato M, Scordalakes EM, Rissman EF (2004) Of mice and missing data: what we know (and need to learn) about male sexual behavior. Physiol Behav 83:217–232CrossRefPubMedGoogle Scholar
  53. 53.
    Pomerantz SM, Nunez AA, Jay Bean N (1983) Female behavior is affected by male ultrasonic vocalizations in house mice. Physiol Behav 31:91–96CrossRefPubMedGoogle Scholar
  54. 54.
    Bakker J, Honda S, Harada N et al (2002) The aromatase knock-out mouse provides new evidence that estradiol is required during development in the female for the expression of sociosexual behaviors in adulthood. J Neurosci 22:9104–9112CrossRefPubMedGoogle Scholar
  55. 55.
    Bendesky A, Kwon Y, Lassance J et al (2017) The genetic basis of parental care evolution in monogamous mice. Nature 544:434–439CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Kuroda KO, Tachikawa K, Yoshida S et al (2011) Neuromolecular basis of parental behavior in laboratory mice and rats: with special emphasis on technical issues of using mouse genetics. Prog Neuropsychopharmacol Biol Psychiatry 35:1205–1231CrossRefPubMedGoogle Scholar
  57. 57.
    Tachikawa KS, Yoshihara Y, Kuroda KO (2013) Behavioral transition from attack to parenting in male mice: a crucial role of the vomeronasal system. J Neurosci 33:5120–5126CrossRefPubMedGoogle Scholar
  58. 58.
    Nakahara TS, Cardozo LM, Ibarra-Soria X et al (2016) Detection of pup odors by non-canonical adult vomeronasal neurons expressing an odorant receptor gene is influenced by sex and parenting status. BMC Biol 14:12CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Wu Z, Autry AE, Bergan JF et al (2014) Galanin neurons in the medial preoptic area govern parental behaviour. Nature 509:325–330CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Capone F, Bonsignore LT, Cirulli F, et al (2005) Methods in the analysis of maternal behavior in the rodent. Curr Protoc Toxicol. Chapter 13:1–16Google Scholar
  61. 61.
    Stern JM, Lonstein JS (2001) Neural mediation of nursing and related maternal behaviors. Prog Brain Res 133:263–278CrossRefPubMedGoogle Scholar
  62. 62.
    Lonstein JS and Fleming AS (2002) Parental behaviors in rats and mice. Curr Protoc Neurosci. Chapter 8:Unit 8.15Google Scholar
  63. 63.
    Champagne FA, Curley JP, Keverne EB et al (2007) Natural variations in postpartum maternal care in inbred and outbred mice. Physiol Behav 91:325–334CrossRefPubMedGoogle Scholar
  64. 64.
    Lonstein JS, Gammie SC (2002) Sensory, hormonal, and neural control of maternal aggression in laboratory rodents. Neurosci Biobehav Rev 26:869–888CrossRefPubMedGoogle Scholar
  65. 65.
    Pedersen CA, Vadlamudi S, Boccia ML et al (2011) Variations in maternal behavior in C57BL/6J mice: behavioral comparisons between adult offspring of high and low pup-licking mothers. Front Psychiatry 2:1–9CrossRefGoogle Scholar
  66. 66.
    Brouette-Lahlou I, Godinot F, Vernet-Maury E (1999) The mother rat’s vomeronasal organ is involved in detection of dodecyl propionate, the pup's preputial gland pheromone. Physiol Behav 66:427–436CrossRefPubMedGoogle Scholar
  67. 67.
    Vom Saal FS (1985) Time-contingent change in infanticide and parental behavior induced by ejaculation in male mice. Physiol Behav 34:7–15CrossRefPubMedGoogle Scholar
  68. 68.
    Champagne FA, Curley JP, Swaney WT et al (2009) Paternal influence on female behavior: the role of Peg3 in exploration, olfaction, and neuroendocrine regulation of maternal behavior of female mice. Behav Neurosci 123:469–480CrossRefPubMedGoogle Scholar
  69. 69.
    Broida J, Svare B (1983) Mice: progesterone and the regulation of strain differences in pregnancy-induced nest building. Behav Neurosci 97:994–1004CrossRefPubMedGoogle Scholar
  70. 70.
    Svare B, Gandelman R (1973) Postpartum aggression in mice: experiential and environmental factors. Horm Behav 4:323–334CrossRefGoogle Scholar
  71. 71.
    Giovenardi M, Padoin MJ, Cadore LP et al (1998) Hypothalamic paraventricular nucleus modulates maternal aggression in rats: effects of ibotenic acid lesion and oxytocin antisense. Physiol Behav 63:351–359CrossRefPubMedGoogle Scholar
  72. 72.
    Parmigiani S, Francesco Ferrari P, Palanza P (1998) An evolutionary approach to behavioral pharmacology: using drugs to understand proximate and ultimate mechanisms of different forms of aggression in mice. Neurosci Biobehav Rev 23:143–153CrossRefPubMedGoogle Scholar
  73. 73.
    Bean NJ, Wysocki CJ (1989) Vomeronasal organ removal and female mouse aggression: the role of experience. Physiol Behav 45:875–882CrossRefPubMedGoogle Scholar
  74. 74.
    Gammie SC, Nelson RJ (1999) Maternal aggression is reduced in neuronal nitric oxide synthase-deficient mice. J Neurosci 19:8027–8035CrossRefPubMedGoogle Scholar
  75. 75.
    Bosch OJ (2013) Maternal aggression in rodents: brain oxytocin and vasopressin mediate pup defence. Philos Trans R Soc Lond Ser B Biol Sci 368:20130085CrossRefGoogle Scholar
  76. 76.
    Svare B, Mann M (1981) Infanticide: genetic, developmental and hormonal influences in mice. Physiol Behav 27:921–927CrossRefPubMedGoogle Scholar
  77. 77.
    Deacon RMJ (2006) Assessing nest building in mice. Nat Protoc 1:1117–1119CrossRefPubMedGoogle Scholar
  78. 78.
    Weber EM, Olsson IAS (2008) Maternal behaviour in Mus musculus sp.: an ethological review. Appl Anim Behav Sci 114:1–22CrossRefGoogle Scholar
  79. 79.
    Vom Saal FS, Howard LS (1982) The regulation of infanticide and parental behavior: implications for reproductive success in male mice. Science 215:1270–1272CrossRefPubMedGoogle Scholar
  80. 80.
    Orikasa C, Kondo Y, Katsumata H et al (2017) Vemoronasal signal deficiency enhances parental behavior in socially isolated male mice. Physiol Behav 168:98–102CrossRefPubMedGoogle Scholar
  81. 81.
    Kobayakawa K, Kobayakawa R, Matsumoto H et al (2007) Innate versus learned odour processing in the mouse olfactory bulb. Nature 450:503–508CrossRefPubMedGoogle Scholar
  82. 82.
    Dey S, Chamero P, Pru JKK et al (2015) Cyclic regulation of sensory perception by a female hormone alters behavior. Cell 161:1334–1344CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Bushdid C, Magnasco MO, Vosshall LB et al (2014) Humans can discriminate more than one trillion olfactory stimuli. Science 343:1370–1373CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Li Q, Korzan WJ, Ferrero DM et al (2013) Synchronous evolution of an odor biosynthesis pathway and behavioral response. Curr Biol 23:11–20CrossRefPubMedGoogle Scholar
  85. 85.
    Schellinck HM (2001) A simple and reliable test of olfactory learning and memory in mice. Chem Senses 26:663–672CrossRefPubMedGoogle Scholar
  86. 86.
    Ren G-L, Huang G-Y, Zheng H et al (2013) Changes in innate and permissive immune responses after HBV transgenic mouse vaccination and llong-term-siRNA treatment. PLoS One 8:e57525CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Inokuchi K, Imamura F, Takeuchi H et al (2017) Nrp2 is sufficient to instruct circuit formation of mitral-cells to mediate odour-induced attractive social responses. Nat Commun 8:15977CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Endres T, Fendt M (2009) Aversion- vs fear-inducing properties of 2,4,5-trimethyl-3-thiazoline, a component of fox odor, in comparison with those of butyric acid. J Exp Biol 212:2324–2327CrossRefPubMedGoogle Scholar
  89. 89.
    Imayoshi I, Sakamoto M, Ohtsuka T et al (2008) Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci 11:1153–1161CrossRefPubMedGoogle Scholar
  90. 90.
    Yang M and Crawley JN (2009) Simple behavioral assessment of mouse olfaction. Curr Protoc Neurosci. Chapter 8:Unit 8.24Google Scholar
  91. 91.
    Cleland TA, Narla VA (2003) Intensity modulation of olfactory acuity. Behav Neurosci 117:1434–1440CrossRefPubMedGoogle Scholar
  92. 92.
    Luo AH, Cannon EH, Wekesa KS et al (2002) Impaired olfactory behavior in mice deficient in the a subunit of G(o). Brain Res 941:62–71CrossRefPubMedGoogle Scholar
  93. 93.
    Lu DC, Zhang H, Zador Z et al (2008) Impaired olfaction in mice lacking aquaporin-4 water channels. FASEB J 22:3216–3223CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Rouby C, Schaal B, Dubois D, Gervais R, Holley A (2002) Olfaction, taste and cognition. Cambridge University Press, Cambridge, UKGoogle Scholar
  95. 95.
    Chaudhury D, Manella L, Arellanos A et al (2010) Olfactory bulb habituation to odor stimuli. Behav Neurosci 124:490–499CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Zou J, Wang W, Pan YW et al (2015) Methods to measure olfactory behavior in mice. Curr Protoc Toxicol 63:11.18.1–11.18.21CrossRefGoogle Scholar
  97. 97.
    Endler JA (1986) Defense against predators. In: Predator-prey relationships: perspectives and approaches from the study of lower vertebrates, Feder ME, Lauder GV (eds.). University of Chicago Press, Chicago, USA, pp 109–134Google Scholar
  98. 98.
    Blanchard RJ, Blanchard DC (1969) Crouching as an index of fear. J Comp Physiol Psychol 67:370–375CrossRefPubMedGoogle Scholar
  99. 99.
    Blanchard RJ, Parmigiani S, Bjornson C et al (1995) Antipredator behavior of Swiss-Webster mice in a visible burrow system. Aggress Behav 21:123–136CrossRefGoogle Scholar
  100. 100.
    Griebel G, Sanger DJ (1999) The mouse defense test battery: an experimental model of different emotional states. In: Animal models of human emotion and cognition. American Psychological Association, Washington, DC, pp 75–85CrossRefGoogle Scholar
  101. 101.
    Blanchard DC, Griebel G, Blanchard RJ (2003) The mouse defense test battery: pharmacological and behavioral assays for anxiety and panic. Eur J Pharmacol 463:97–116CrossRefPubMedGoogle Scholar
  102. 102.
    Griebel G, Blanchard DC, Jung A et al (1995) Further evidence that the mouse defense test battery is useful for screening anxiolytic and panicolytic drugs: effects of acute and chronic treatment with alprazolam. Neuropharmacology 34:1625–1633CrossRefPubMedGoogle Scholar
  103. 103.
    Carvalho VM, Nakahara TS, Cardozo LM et al (2015) Lack of spatial segregation in the representation of pheromones and kairomones in the mouse medial amygdala. Front Neurosci 9:1–19CrossRefGoogle Scholar
  104. 104.
    Blanchard RJ, Blanchard DC (1989) Antipredator defensive behaviors in a visible burrow system. J Comp Psychol 103:70–82CrossRefPubMedGoogle Scholar
  105. 105.
    Griebel G, Sanger DJ, Perrault G (1997) Genetic differences in the mouse defense test battery. Aggress Behav 23:19–31CrossRefGoogle Scholar
  106. 106.
    Blanchard RJ, Flannelly KJ, Blanchard DC (1986) Defensive behaviors of laboratory and wild Rattus norvegicus. J Comp Psychol 100:101–107CrossRefPubMedGoogle Scholar
  107. 107.
    Blanchard RJ, Caroline Blanchard D (1977) Aggressive behavior in the rat. Behav Biol 21:197–224CrossRefPubMedGoogle Scholar
  108. 108.
    Blanchard DC, Griebel G, Blanchard RJ (2001) Mouse defensive behaviors: pharmacological and behavioral assays for anxiety and panic. Neurosci Biobehav Rev 25:205–218CrossRefPubMedGoogle Scholar
  109. 109.
    Dielenberg RA, Hunt GE, McGregor IS (2001) “When a rat smells a cat”: the distribution of Fos immunoreactivity in rat brain following exposure to a predatory odor. Neuroscience 104:1085–1097CrossRefPubMedGoogle Scholar
  110. 110.
    Hebb ALO, Zacharko RM, Gauthier M et al (2004) Brief exposure to predator odor and resultant anxiety enhances mesocorticolimbic activity and enkephalin expression in CD-1 mice. Eur J Neurosci 20:2415–2429CrossRefPubMedGoogle Scholar
  111. 111.
    Kemble ED, Bolwahnn BL (1997) Immediate and long-term effects of novel odors on risk assessment in mice. Physiol Behav 61:543–549CrossRefPubMedGoogle Scholar
  112. 112.
    Blanchard DC, Blanchard RJ, Tom P et al (1990) Diazepam changes risk assessment in an anxiety/defense test battery. Psychopharmacology 101:511–518CrossRefPubMedGoogle Scholar
  113. 113.
    Masini CV, Garcia RJ, Sasse SK et al (2010) Accessory and main olfactory systems influences on predator odor-induced behavioral and endocrine stress responses in rats. Behav Brain Res 207:70–77CrossRefPubMedGoogle Scholar
  114. 114.
    Samuelsen CL, Meredith M (2009) The vomeronasal organ is required for the male mouse medial amygdala response to chemical-communication signals, as assessed by immediate early gene expression. Neuroscience 164:1468–1476CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Pérez-Gómez A, Bleymehl K, Stein B et al (2015) Innate predator odor aversion driven by parallel olfactory subsystems that converge in the ventromedial hypothalamus. Curr Biol 25:1–7CrossRefGoogle Scholar
  116. 116.
    Smith WA, Butler AJL, Hazell LA et al (2004) Fel d 4, a cat lipocalin allergen. Clin Exp Allergy 34:1732–1738CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Paxinos G, Franklin KBJ (2013) Paxinos and Franklin’s the mouse brain in stereotaxic coordinates. Academic Press, Boston, USAGoogle Scholar
  118. 118.
    Potter SM, Zheng C, Koos DS et al (2001) Structure and emergence of specific olfactory glomeruli in the mouse. J Neurosci 21:9713–9723CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Yoon H, Enquist LW, Dulac C (2005) Olfactory inputs to hypothalamic neurons controlling reproduction and fertility. Cell 123:669–682CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Fabio Papes
    • 1
  • Thiago S. Nakahara
    • 1
    • 2
  • Antonio P. Camargo
    • 1
    • 2
  1. 1.Department of Genetics and Evolution, Institute of BiologyUniversity of CampinasCampinasBrazil
  2. 2.Graduate Program in Genetics and Molecular Biology, Institute of BiologyUniversity of CampinasCampinasBrazil

Personalised recommendations