Advertisement

Odor-Induced Electrical and Calcium Signals from Olfactory Sensory Neurons In Situ

  • Xavier Grosmaitre
  • Minghong Ma
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1820)

Abstract

Electrophysiological recording and optical imaging enable the characterization of membrane and odorant response properties of olfactory sensory neurons (OSNs) in the nasal neuroepithelium. Here we describe a method to record the responses of mammalian OSNs to odorant stimulations in an ex vivo preparation of intact olfactory epithelium. The responses of individual OSNs with defined odorant receptor types can be monitored via patch-clamp recording or calcium imaging.

Key words

Olfactory sensory neurons Electrophysiology Patch-clamp Gene targeting Transduction Calcium imaging GCaMP6 

Notes

Acknowledgments

M.M. is supported by the National Institute of Deafness and Other Communication Disorders, National Institute of Health (R01DC006213) and the National Science Foundation (1515930). X.G. is supported by CNRS (ATIP and ATIP-Plus grant), the Conseil Régional Bourgogne-Franche-Comté (PARI grant) and the FEDER (European Funding for Regional Economical Development).

References

  1. 1.
    Ma M, Chen WR, Shepherd GM (1999) Electrophysiological characterization of rat and mouse olfactory receptor neurons from an intact epithelial preparation. J Neurosci Methods 92(1-2):31–40.  https://doi.org/10.1016/S0165-0270(99)00089-8 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Connelly T, Yu Y, Grosmaitre X, Wang J, Santarelli LC, Savigner A, Qiao X, Wang Z, Storm DR, Ma M (2015) G protein-coupled odorant receptors underlie mechanosensitivity in mammalian olfactory sensory neurons. Proc Natl Acad Sci U S A 112(2):590–595.  https://doi.org/10.1073/pnas.1418515112 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Tazir B, Khan M, Mombaerts P, Grosmaitre X (2016) The extremely broad odorant response profile of mouse olfactory sensory neurons expressing the odorant receptor MOR256-17 includes trace amine-associated receptor ligands. Eur J Neurosci 43(5):608–617.  https://doi.org/10.1111/ejn.13153 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Grosmaitre X, Fuss SH, Lee AC, Adipietro KA, Matsunami H, Mombaerts P, Ma M (2009) SR1, a mouse odorant receptor with an unusually broad response profile. J Neurosci 29(46):14545–14552.  https://doi.org/10.1523/JNEUROSCI.2752-09.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Grosmaitre X, Vassalli A, Mombaerts P, Shepherd GM, Ma M (2006) Odorant responses of olfactory sensory neurons expressing the odorant receptor MOR23: a patch clamp analysis in gene-targeted mice. Proc Natl Acad Sci U S A 103(6):1970–1975.  https://doi.org/10.1073/pnas.0508491103 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Nguyen MQ, Zhou Z, Marks CA, Ryba NJ, Belluscio L (2007) Prominent roles for odorant receptor coding sequences in allelic exclusion. Cell 131(5):1009–1017.  https://doi.org/10.1016/j.cell.2007.10.050 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Zhang J, Huang G, Dewan A, Feinstein P, Bozza T (2012) Uncoupling stimulus specificity and glomerular position in the mouse olfactory system. Mol Cell Neurosci 51(3-4):79–88.  https://doi.org/10.1016/j.mcn.2012.08.006 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zhang J, Pacifico R, Cawley D, Feinstein P, Bozza T (2013) Ultrasensitive detection of amines by a trace amine-associated receptor. J Neurosci 33(7):3228–3239.  https://doi.org/10.1523/JNEUROSCI.4299-12.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lam RS, Mombaerts P (2013) Odorant responsiveness of embryonic mouse olfactory sensory neurons expressing the odorant receptors S1 or MOR23. Eur J Neurosci 38(2):2210–2217.  https://doi.org/10.1111/ejn.12240 CrossRefPubMedGoogle Scholar
  10. 10.
    Lee AC, Tian H, Grosmaitre X, Ma M (2009) Expression patterns of odorant receptors and response properties of olfactory sensory neurons in aged mice. Chem Senses 34(8):695–703.  https://doi.org/10.1093/chemse/bjp056 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Cadiou H, Aoude I, Tazir B, Molinas A, Fenech C, Meunier N, Grosmaitre X (2014) Postnatal odorant exposure induces peripheral olfactory plasticity at the cellular level. J Neurosci 34(14):4857–4870.  https://doi.org/10.1523/JNEUROSCI.0688-13.2014 CrossRefPubMedGoogle Scholar
  12. 12.
    Riviere S, Soubeyre V, Jarriault D, Molinas A, Leger-Charnay E, Desmoulins L, Grebert D, Meunier N, Grosmaitre X (2016) High fructose diet inducing diabetes rapidly impacts olfactory epithelium and behavior in mice. Sci Rep 6:34011.  https://doi.org/10.1038/srep34011
  13. 13.
    Ma M, Shepherd GM (2000) Functional mosaic organization of mouse olfactory receptor neurons. Proc Natl Acad Sci U S A 97(23):12869–12874.  https://doi.org/10.1073/pnas.220301797 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hu J, Zhong C, Ding C, Chi Q, Walz A, Mombaerts P, Matsunami H, Luo M (2007) Detection of near-atmospheric concentrations of CO2 by an olfactory subsystem in the mouse. Science 317(5840):953–957.  https://doi.org/10.1126/science.1144233 CrossRefPubMedGoogle Scholar
  15. 15.
    Leinders-Zufall T, Cockerham RE, Michalakis S, Biel M, Garbers DL, Reed RR, Zufall F, Munger SD (2007) Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium. Proc Natl Acad Sci U S A 104(36):14507–14512.  https://doi.org/10.1073/pnas.0704965104 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Li J, Ishii T, Feinstein P, Mombaerts P (2004) Odorant receptor gene choice is reset by nuclear transfer from mouse olfactory sensory neurons. Nature 428(6981):393–399.  https://doi.org/10.1038/nature02433 CrossRefPubMedGoogle Scholar
  17. 17.
    Madisen L, Garner AR, Shimaoka D, Chuong AS, Klapoetke NC, Li L, van der Bourg A, Niino Y, Egolf L, Monetti C, Gu H, Mills M, Cheng A, Tasic B, Nguyen TN, Sunkin SM, Benucci A, Nagy A, Miyawaki A, Helmchen F, Empson RM, Knopfel T, Boyden ES, Reid RC, Carandini M, Zeng H (2015) Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron 85(5):942–958.  https://doi.org/10.1016/j.neuron.2015.02.022 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre des Sciences du Goût et de l’AlimentationUMR AgroSup, CNRS, INRA, Université de Bourgogne-Franche-ComtéDijonFrance
  2. 2.Department of NeuroscienceUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaUSA

Personalised recommendations