Advertisement

CD36 Neuronal Identity in the Olfactory Epithelium

  • André Machado Xavier
  • Isaias Glezer
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1820)

Abstract

CD36 scavenger receptor is expressed in a subpopulation of olfactory sensory neurons (OSNs). These neurons express canonical olfactory signaling machinery; however, not all odorant receptors (ORs) are coexpressed with CD36. In situ hybridization (ISH) enables the detection of nucleic acids in tissues, cells, or isolated chromosomes. The development of nonradioactive and stable labeling probes almost 30 years ago, allowed to routinely perform this technique employing different labeling strategies in one experiment. ISH is widely used in the field of neurobiology of the sense of smell, providing valuable neuroanatomical information regarding the molecular organization of the olfactory epithelium (OE). Here we show a method for studying CD36+-OSNs and provide a detailed protocol for chromogenic ISH, one- or two-color fluorescent ISH, which can be combined with immunofluorescence and are suitable for Cd36 mRNA probing simultaneous to other transcripts and/or proteins labeling.

Key words

CD36 Olfactory sensory neurons Olfactory epithelium In situ hybridization 

Notes

Acknowledgments

This work was supported by grants FAPESP 2007/53732-8 and CEPID FAPESP grant 2013/07937-8.

References

  1. 1.
    Pardue ML, Gall JG (1969) Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proc Natl Acad Sci U S A 64:600–604CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    John HA, Birnstiel ML, Jones KW (1969) RNA-DNA hybrids at the cytological level. Nat Publ Gr 223:582–587CrossRefGoogle Scholar
  3. 3.
    Moench TR (1987) In situ hybridizationCrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Xiao S, Renshaw A, Cibas ES et al (1995) Novel fluorescence in situ hybridization approaches in solid tumors. Characterization of frozen specimens, touch preparations, and cytological preparations. Am J Pathol 147:896–904PubMedPubMedCentralGoogle Scholar
  5. 5.
    Touhara K (2001) Functional cloning and reconstitution of vertebrate odorant receptors. Life Sci 68:2199–2206CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ihara S, Yoshikawa K, Touhara K (2013) Chemosensory signals and their receptors in the olfactory neural system. Neuroscience 254:45–60CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Munger SD, Leinders-Zufall T, Zufall F (2009) Subsystem organization of the mammalian sense of smell. Annu Rev Physiol 71:115–140CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Malnic B, Hirono J, Sato T et al (1999) Combinatorial receptor codes for odors. Cell 96:713–723CrossRefPubMedGoogle Scholar
  10. 10.
    Sakano H (2010) Review neural map formation in the mouse olfactory system. Neuron 67:530–542CrossRefPubMedGoogle Scholar
  11. 11.
    Serizawa S, Ishii T, Nakatani H et al (2000) Mutually exclusive expression of odorant receptor transgenes. Nat Neurosci 3:687–693CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hanchate NK, Kondoh K, Lu Z et al (2015) Single-cell transcriptomics reveals receptor transformations during olfactory neurogenesis. Science 80(350):1251–1255CrossRefGoogle Scholar
  13. 13.
    Oberland S, Ackels T, Gaab S et al (2015) CD36 is involved in oleic acid detection by the murine olfactory system. Front Cell Neurosci 9:366CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lee S, Eguchi A, Tsuzuki S et al (2015) Expression of CD36 by olfactory receptor cells and its abundance on the epithelial surface in mice. PLoS One 10Google Scholar
  15. 15.
    Xavier AM, Ludwig RG, Nagai MH et al (2016) CD36 is expressed in a defined subpopulation of neurons in the olfactory epithelium. Sci Rep 6:VN-re:25507CrossRefPubMedGoogle Scholar
  16. 16.
    Omura M, Mombaerts P (2015) Trpc2-expressing sensory neurons in the mouse main olfactory epithelium of type B express the soluble guanylate cyclase Gucy1b2. Mol Cell Neurosci 65:114–124CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Greer PL, Bear DM, Lassance JM et al (2016) A family of non-GPCR Chemosensors defines an alternative logic for mammalian olfaction. Cell 165:1734–1748CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Liberles SD, Buck LB (2006) A second class of chemosensory receptors in the olfactory epithelium. Nature 442:645–650CrossRefPubMedGoogle Scholar
  19. 19.
    Leinders-Zufall T, Cockerham RE, Michalakis S et al (2007) Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium. Proc Natl Acad Sci U S A 104:14507–14512CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zhang J, Pacifico R, Cawley D et al (2013) Ultrasensitive detection of amines by a trace amine-associated receptor. J Neurosci 33:3228–3239CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Dewan A, Pacifico R, Zhan R et al (2013) Non-redundant coding of aversive odours in the main olfactory pathway. Nature 497:486–489CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Laflamme N, Lacroix S, Rivest S (1999) An essential role of interleukin-1beta in mediating NF-kappaB activity and COX-2 transcription in cells of the blood-brain barrier in response to a systemic and localized inflammation but not during endotoxemia. J Neurosci 19:10923–10930CrossRefPubMedGoogle Scholar
  23. 23.
    Ishii T, Omura M, Mombaerts P (2005) Protocols for two- and three-color fluorescent RNA in situ hybridization of the main and accessory olfactory epithelia in mouse. J Neurocytol 33:657–669CrossRefGoogle Scholar
  24. 24.
    Ingham P, Conlon R, Rosen B et al (1999) In situ hybridization: a practical approach. Oxford University Press, New YorkGoogle Scholar
  25. 25.
    Schaeren-Wiemers N, Gerfin-Moser A (1993) A single protocol to detect transcripts of various types and expression levels in neural tissue and cultured cells: in situ hybridization using digoxigenin-labelled cRNA probes. Histochemistry 100:431–440CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiochemistryUniversidade Federal de São PauloSão PauloBrazil

Personalised recommendations