Abstract
Fluorescence photoactivation provides a strategy for monitoring protein kinetics within living cells. In particular, fluorescence photoactivation of a subpopulation of microtubule subunits within the spindle using photoactivatable fluorescent tubulin constructs has proven useful for assessing a variety of features of spindle microtubule dynamics, including poleward microtubule movement, microtubule depolymerization, and microtubule turnover, in various cellular settings. The current chapter describes a method for monitoring microtubule dynamics within the mouse egg spindle by photoactivation of photoactivatable-GFP-tubulin, followed by time-lapse confocal imaging.
Key words
- Mouse oocyte
- Photoactivatable GFP
- Microtubule dynamics
This is a preview of subscription content, access via your institution.
Buying options

References
Lippincott-Schwartz J, Altan-Bonnet N, Patterson GH (2003) Photobleaching and photoactivation: following protein dynamics in living cells. Nat Cell Biol Suppl:S7–S14
Matsuda T, Nagai T (2014) Quantitative measurement of intracellular protein dynamics using photobleaching or photoactivation of fluorescent proteins. Microscopy (Oxf) 63:403–408
Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873–1877
Patterson GH, Lippincott-Schwartz J (2004) Selective photolabeling of proteins using photoactivatable GFP. Methods 32:445–450
Zhou XX, Lin MZ (2013) Photoswitchable fluorescent proteins: ten years of colorful chemistry and exciting applications. Curr Opin Chem Biol 17:682–690
Compton DA (2000) Spindle assembly in animal cells. Annu Rev Biochem 69:95–114
Heald R, Khodjakov A (2015) Thirty years of search and capture: the complex simplicity of mitotic spindle assembly. J Cell Biol 211:1103–1111
Zhai Y, Kronebusch PJ, Borisy GG (1995) Kinetochore microtubule dynamics and the metaphase-anaphase transition. J Cell Biol 131:721–734
Mitchison TJ (1989) Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence. J Cell Biol 109:637–652
Rogers GC, Rogers SL, Sharp DJ (2005) Spindle microtubules in flux. J Cell Sci 118:1105–1116
Bakhoum SF, Thompson SL, Manning AL, Compton DA (2009) Genome stability is ensured by temporal control of kinetochore-microtubule dynamics. Nat Cell Biol 11:27–35
Bakhoum SF, Genovese G, Compton DA (2009) Deviant kinetochore microtubule dynamics underlie chromosomal instability. Curr Biol 19:1937–1942
Fitzharris G (2009) A shift from kinesin 5-dependent metaphase spindle function during preimplantation development in mouse. Development 136:2111–2119
FitzHarris G (2012) Anaphase B precedes anaphase a in the mouse egg. Curr Biol 22:437–444
Nakagawa S, FitzHarris G (2016) Quantitative microinjection of Morpholino antisense oligonucleotides into mouse oocytes to examine gene function in meiosis-I. Methods Mol Biol 1457:217–230
Zhang QH, Yuen WS, Adhikari D, Flegg JA, FitzHarris G, Conti M, Sicinski P, Nabti I, Marangos P, Carroll J (2017) Cyclin A2 modulates kinetochore-microtubule attachment in meiosis II. J Cell Biol 216(10):3133–3143
Dumollard R et al (2004) Sperm-triggered [Ca2+] oscillations and Ca2+ homeostasis in the mouse egg have an absolute requirement for mitochondrial ATP production. Development 131:3057–3067
Dalton CM, Carroll J (2013) Biased inheritance of mitochondria during asymmetric cell division in the mouse oocyte. J Cell Sci 126(Pt 13):2955–2964
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
FitzHarris, G. (2018). Monitoring Microtubule Dynamics in the Mouse Egg Using Photoactivatable-GFP-Tubulin. In: Verlhac, MH., Terret, ME. (eds) Mouse Oocyte Development. Methods in Molecular Biology, vol 1818. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8603-3_14
Download citation
DOI: https://doi.org/10.1007/978-1-4939-8603-3_14
Published:
Publisher Name: Humana Press, New York, NY
Print ISBN: 978-1-4939-8602-6
Online ISBN: 978-1-4939-8603-3
eBook Packages: Springer Protocols