Skip to main content

Monitoring Microtubule Dynamics in the Mouse Egg Using Photoactivatable-GFP-Tubulin

  • 1267 Accesses

Part of the Methods in Molecular Biology book series (MIMB,volume 1818)

Abstract

Fluorescence photoactivation provides a strategy for monitoring protein kinetics within living cells. In particular, fluorescence photoactivation of a subpopulation of microtubule subunits within the spindle using photoactivatable fluorescent tubulin constructs has proven useful for assessing a variety of features of spindle microtubule dynamics, including poleward microtubule movement, microtubule depolymerization, and microtubule turnover, in various cellular settings. The current chapter describes a method for monitoring microtubule dynamics within the mouse egg spindle by photoactivation of photoactivatable-GFP-tubulin, followed by time-lapse confocal imaging.

Key words

  • Mouse oocyte
  • Photoactivatable GFP
  • Microtubule dynamics

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-8603-3_14
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-8603-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 1

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lippincott-Schwartz J, Altan-Bonnet N, Patterson GH (2003) Photobleaching and photoactivation: following protein dynamics in living cells. Nat Cell Biol Suppl:S7–S14

    Google Scholar 

  2. Matsuda T, Nagai T (2014) Quantitative measurement of intracellular protein dynamics using photobleaching or photoactivation of fluorescent proteins. Microscopy (Oxf) 63:403–408

    CrossRef  CAS  Google Scholar 

  3. Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873–1877

    CrossRef  PubMed  CAS  Google Scholar 

  4. Patterson GH, Lippincott-Schwartz J (2004) Selective photolabeling of proteins using photoactivatable GFP. Methods 32:445–450

    CrossRef  PubMed  CAS  Google Scholar 

  5. Zhou XX, Lin MZ (2013) Photoswitchable fluorescent proteins: ten years of colorful chemistry and exciting applications. Curr Opin Chem Biol 17:682–690

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  6. Compton DA (2000) Spindle assembly in animal cells. Annu Rev Biochem 69:95–114

    CrossRef  PubMed  CAS  Google Scholar 

  7. Heald R, Khodjakov A (2015) Thirty years of search and capture: the complex simplicity of mitotic spindle assembly. J Cell Biol 211:1103–1111

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  8. Zhai Y, Kronebusch PJ, Borisy GG (1995) Kinetochore microtubule dynamics and the metaphase-anaphase transition. J Cell Biol 131:721–734

    CrossRef  PubMed  CAS  Google Scholar 

  9. Mitchison TJ (1989) Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence. J Cell Biol 109:637–652

    CrossRef  PubMed  CAS  Google Scholar 

  10. Rogers GC, Rogers SL, Sharp DJ (2005) Spindle microtubules in flux. J Cell Sci 118:1105–1116

    CrossRef  PubMed  CAS  Google Scholar 

  11. Bakhoum SF, Thompson SL, Manning AL, Compton DA (2009) Genome stability is ensured by temporal control of kinetochore-microtubule dynamics. Nat Cell Biol 11:27–35

    CrossRef  PubMed  CAS  Google Scholar 

  12. Bakhoum SF, Genovese G, Compton DA (2009) Deviant kinetochore microtubule dynamics underlie chromosomal instability. Curr Biol 19:1937–1942

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  13. Fitzharris G (2009) A shift from kinesin 5-dependent metaphase spindle function during preimplantation development in mouse. Development 136:2111–2119

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  14. FitzHarris G (2012) Anaphase B precedes anaphase a in the mouse egg. Curr Biol 22:437–444

    CrossRef  PubMed  CAS  Google Scholar 

  15. Nakagawa S, FitzHarris G (2016) Quantitative microinjection of Morpholino antisense oligonucleotides into mouse oocytes to examine gene function in meiosis-I. Methods Mol Biol 1457:217–230

    CrossRef  PubMed  CAS  Google Scholar 

  16. Zhang QH, Yuen WS, Adhikari D, Flegg JA, FitzHarris G, Conti M, Sicinski P, Nabti I, Marangos P, Carroll J (2017) Cyclin A2 modulates kinetochore-microtubule attachment in meiosis II. J Cell Biol 216(10):3133–3143

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  17. Dumollard R et al (2004) Sperm-triggered [Ca2+] oscillations and Ca2+ homeostasis in the mouse egg have an absolute requirement for mitochondrial ATP production. Development 131:3057–3067

    CrossRef  PubMed  CAS  Google Scholar 

  18. Dalton CM, Carroll J (2013) Biased inheritance of mitochondria during asymmetric cell division in the mouse oocyte. J Cell Sci 126(Pt 13):2955–2964

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg FitzHarris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

FitzHarris, G. (2018). Monitoring Microtubule Dynamics in the Mouse Egg Using Photoactivatable-GFP-Tubulin. In: Verlhac, MH., Terret, ME. (eds) Mouse Oocyte Development. Methods in Molecular Biology, vol 1818. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8603-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8603-3_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8602-6

  • Online ISBN: 978-1-4939-8603-3

  • eBook Packages: Springer Protocols