Skip to main content

Experimental Models of Cardiovascular Diseases: Overview

  • Protocol
  • First Online:
Experimental Models of Cardiovascular Diseases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1816))

Abstract

Cardiovascular disease is one of the most common causes of deaths in clinics. Experimental models of cardiovascular diseases are essential to understand disease mechanism, to provide accurate diagnoses, and to develop new therapies. Large numbers of experimental models have been proposed and replicated by many laboratories in the past. Models with significant advantages are chosen and became more popular. Particularly, feasibility, reproducibility, and human disease resemblance are the common key factors for frequently used cardiovascular disease models. In this chapter, we provide a brief overview of these experimental models used for in vitro, in vivo, and in silico studies of cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C, Isasi CR, Jimenez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu SM, Longenecker CT, Mackey RH, Matsushita K, Mozaffarian D, Mussolino ME, Nasir K, Neumar RW, Palaniappan L, Pandey DK, Thiagarajan RR, Reeves MJ, Ritchey M, Rodriguez CJ, Roth GA, Rosamond WD, Sasson C, Towfighi A, Tsao CW, Turner MB, Virani SS, Voeks JH, Willey JZ, Wilkins JT, Wu JHY, Alger HM, Wong SS, Muntner P, Comm AHAS, Subcomm SS (2017) Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation 135(10):E146–E603. https://doi.org/10.1161/Cir.0000000000000485

    Article  PubMed  PubMed Central  Google Scholar 

  2. O’Hara T, Virag L, Varro A, Rudy Y (2011) Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation. PLoS Comput Biol 7(5):e1002061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dorri F, Niederer PF, Lunkenheimer PP (2006) A finite element model of the human left ventricular systole. Comput Methods Biomech Biomed Engin 9(5):319–341

    Article  CAS  PubMed  Google Scholar 

  4. Santamore WP, Burkhoff D (1991) Hemodynamic consequences of ventricular interaction as assessed by model analysis. Am J Phys 260(1 Pt 2):H146–H157

    CAS  Google Scholar 

  5. Louch WE, Sheehan KA, Wolska BM (2011) Methods in cardiomyocyte isolation, culture, and gene transfer. J Mol Cell Cardiol 51(3):288–298. S0022-2828(11)00250-1 [pii]. https://doi.org/10.1016/j.yjmcc.2011.06.012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Simpson P, McGrath A, Savion S (1982) Myocyte hypertrophy in neonatal rat heart cultures and its regulation by serum and by catecholamines. Circ Res 51(6):787–801

    Article  CAS  PubMed  Google Scholar 

  7. Sadoshima J, Izumo S (1993) Molecular characterization of angiotensin II – induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res 73(3):413–423

    Article  CAS  PubMed  Google Scholar 

  8. Sakai S, Shimojo N, Kimura T, Tajiri K, Maruyama H, Homma S, Kuga K, Mizutani T, Aonuma K, Miyauchi T (2014) Involvement of peptidyl-prolyl isomerase Pin1 in the inhibitory effect of fluvastatin on endothelin-1-induced cardiomyocyte hypertrophy. Life Sci 102(2):98–104. S0024-3205(14)00343-9 [pii]. https://doi.org/10.1016/j.lfs.2014.03.018

    Article  PubMed  CAS  Google Scholar 

  9. Komuro I, Kaida T, Shibazaki Y, Kurabayashi M, Katoh Y, Hoh E, Takaku F, Yazaki Y (1990) Stretching cardiac myocytes stimulates protooncogene expression. J Biol Chem 265(7):3595–3598

    PubMed  CAS  Google Scholar 

  10. Acosta D, Puckett M (1977) Ischemic myocardial injury in cultured heart cells: preliminary observations on morphology and beating activity. In Vitro 13(12):818–823

    Article  CAS  PubMed  Google Scholar 

  11. Peng K, Qiu Y, Li J, Zhang ZC, Ji FH (2017) Dexmedetomidine attenuates hypoxia/reoxygenation injury in primary neonatal rat cardiomyocytes. Exp Ther Med 14(1):689–695. https://doi.org/10.3892/etm.2017.4537. ETM-0-0-4537 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  12. Brette F, Orchard C (2003) T-tubule function in mammalian cardiac myocytes. Circ Res 92(11):1182–1192. https://doi.org/10.1161/01.RES.0000074908.17214.FD. 92/11/1182 [pii]

    Article  PubMed  CAS  Google Scholar 

  13. Gilsbach R, Preissl S, Gruning BA, Schnick T, Burger L, Benes V, Wurch A, Bonisch U, Gunther S, Backofen R, Fleischmann BK, Schubeler D, Hein L (2014) Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease. Nat Commun 5:5288. ncomms6288 [pii]. https://doi.org/10.1038/ncomms6288

    Article  PubMed  CAS  Google Scholar 

  14. Bhargava A, Lin X, Novak P, Mehta K, Korchev Y, Delmar M, Gorelik J (2013) Super-resolution scanning patch clamp reveals clustering of functional ion channels in adult ventricular myocyte. Circ Res 112(8):1112–1120. https://doi.org/10.1161/CIRCRESAHA.111.300445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Gaitas A, Malhotra R, Li T, Herron T, Jalife J (2015) A device for rapid and quantitative measurement of cardiac myocyte contractility. Rev Sci Instrum 86(3):034302. https://doi.org/10.1063/1.4915500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Moshal KS, Tipparaju SM, Vacek TP, Kumar M, Singh M, Frank IE, Patibandla PK, Tyagi N, Rai J, Metreveli N, Rodriguez WE, Tseng MT, Tyagi SC (2008) Mitochondrial matrix metalloproteinase activation decreases myocyte contractility in hyperhomocysteinemia. Am J Physiol Heart Circ Physiol 295(2):H890–H897. 00099.2008 [pii]. https://doi.org/10.1152/ajpheart.00099.2008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Cagalinec M, Waczulikova I, Ulicna O, Chorvat D Jr (2013) Morphology and contractility of cardiac myocytes in early stages of streptozotocin-induced diabetes mellitus in rats. Physiol Res 62(5):489–501. 932467 [pii]

    PubMed  CAS  Google Scholar 

  18. Marvin WJ Jr, Robinson RB, Hermsmeyer K (1979) Correlation of function and morphology of neonatal rat and embryonic chick cultured cardiac and vascular muscle cells. Circ Res 45(4):528–540

    Article  PubMed  Google Scholar 

  19. Kimes BW, Brandt BL (1976) Properties of a clonal muscle cell line from rat heart. Exp Cell Res 98(2):367–381

    Article  CAS  PubMed  Google Scholar 

  20. Steinhelper ME, Lanson NA Jr, Dresdner KP, Delcarpio JB, Wit AL, Claycomb WC, Field LJ (1990) Proliferation in vivo and in culture of differentiated adult atrial cardiomyocytes from transgenic mice. Am J Phys 259(6 Pt 2):H1826–H1834. https://doi.org/10.1152/ajpheart.1990.259.6.H1826

    Article  CAS  Google Scholar 

  21. Delcarpio JB, Lanson NA Jr, Field LJ, Claycomb WC (1991) Morphological characterization of cardiomyocytes isolated from a transplantable cardiac tumor derived from transgenic mouse atria (AT-1 cells). Circ Res 69(6):1591–1600

    Article  CAS  PubMed  Google Scholar 

  22. Jaffredo T, Chestier A, Bachnou N, Dieterlen-Lievre F (1991) MC29-immortalized clonal avian heart cell lines can partially differentiate in vitro. Exp Cell Res 192(2):481–491

    Article  CAS  PubMed  Google Scholar 

  23. Claycomb WC, Lanson NA Jr, Stallworth BS, Egeland DB, Delcarpio JB, Bahinski A, Izzo NJ Jr (1998) HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci U S A 95(6):2979–2984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Davidson MM, Nesti C, Palenzuela L, Walker WF, Hernandez E, Protas L, Hirano M, Isaac ND (2005) Novel cell lines derived from adult human ventricular cardiomyocytes. J Mol Cell Cardiol 39(1):133–147. S0022-2828(05)00076-3 [pii]. https://doi.org/10.1016/j.yjmcc.2005.03.003

    Article  PubMed  CAS  Google Scholar 

  25. Moretti A, Bellin M, Welling A, Jung CB, Lam JT, Bott-Flugel L, Dorn T, Goedel A, Hohnke C, Hofmann F, Seyfarth M, Sinnecker D, Schomig A, Laugwitz KL (2010) Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med 363(15):1397–1409. NEJMoa0908679 [pii]. https://doi.org/10.1056/NEJMoa0908679

    Article  PubMed  CAS  Google Scholar 

  26. Burridge PW, Li YF, Matsa E, Wu H, Ong SG, Sharma A, Holmstrom A, Chang AC, Coronado MJ, Ebert AD, Knowles JW, Telli ML, Witteles RM, Blau HM, Bernstein D, Altman RB, Wu JC (2016) Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat Med 22(5):547–556. nm.4087 [pii]. https://doi.org/10.1038/nm.4087

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Zhang J, Chu LF, Hou Z, Schwartz MP, Hacker T, Vickerman V, Swanson S, Leng N, Nguyen BK, Elwell A, Bolin J, Brown ME, Stewart R, Burlingham WJ, Murphy WL, Thomson JA (2017) Functional characterization of human pluripotent stem cell-derived arterial endothelial cells. Proc Natl Acad Sci U S A 114(30):E6072–E6078. https://doi.org/10.1073/pnas.1702295114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Ji H, Kim HS, Kim HW, Leong KW (2017) Application of induced pluripotent stem cells to model smooth muscle cell function in vascular diseases. Curr Opin Biomed Eng 1:38–44. https://doi.org/10.1016/j.cobme.2017.02.005

    Article  PubMed  PubMed Central  Google Scholar 

  29. Langendorff O (1895) Untersuchungen am uberlebenden saugethierherzen (investigations on the surviving mammalian heart). Arch Ges Physiol 61:291–332

    Article  Google Scholar 

  30. Suga H, Hisano R, Goto Y, Yamada O, Igarashi Y (1983) Effect of positive inotropic agents on the relation between oxygen consumption and systolic pressure volume area in canine left ventricle. Circ Res 53(3):306–318

    Article  CAS  PubMed  Google Scholar 

  31. Frommeyer G, Milberg P, Witte P, Stypmann J, Koopmann M, Lucke M, Osada N, Breithardt G, Fehr M, Eckardt L (2011) A new mechanism preventing proarrhythmia in chronic heart failure: rapid phase-III repolarization explains the low proarrhythmic potential of amiodarone in contrast to sotalol in a model of pacing-induced heart failure. Eur J Heart Fail 13(10):1060–1069

    Article  CAS  PubMed  Google Scholar 

  32. Motloch LJ, Ishikawa K, Xie C, Hu J, Aguero J, Fish KM, Hajjar RJ, Akar FG (2017) Increased afterload following myocardial infarction promotes conduction-dependent arrhythmias that are unmasked by hypokalemia. JACC Basic Transl Sci 2(3):258–269. https://doi.org/10.1016/j.jacbts.2017.02.002

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kim DE, Lee EJ, Martens TP, Kara R, Chaudhry HW, Itescu S, Costa KD (2006) Engineered cardiac tissues for in vitro assessment of contractile function and repair mechanisms. Conf Proc IEEE Eng Med Biol Soc 1:849–852. https://doi.org/10.1109/IEMBS.2006.259753

    Article  Google Scholar 

  34. Van Epps JS, Chew DW, Vorp DA (2009) Effects of cyclic flexure on endothelial permeability and apoptosis in arterial segments perfused ex vivo. J Biomech Eng 131(10):101005. https://doi.org/10.1115/1.3192143

    Article  PubMed  Google Scholar 

  35. Sutton MG, Sharpe N (2000) Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 101(25):2981–2988

    Article  CAS  PubMed  Google Scholar 

  36. Camacho P, Fan H, Liu Z, He JQ (2016) Small mammalian animal models of heart disease. Am J Cardiovasc Dis 6(3):70–80

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Guenet JL (2005) The mouse genome. Genome Res 15(12):1729–1740. https://doi.org/10.1101/gr.3728305

    Article  PubMed  CAS  Google Scholar 

  38. Patten RD, Hall-Porter MR (2009) Small animal models of heart failure: development of novel therapies, past and present. Circ Heart Fail 2(2):138–144. https://doi.org/10.1161/CIRCHEARTFAILURE.108.839761

    Article  PubMed  Google Scholar 

  39. Dewald O, Ren G, Duerr GD, Zoerlein M, Klemm C, Gersch C, Tincey S, Michael LH, Entman ML, Frangogiannis NG (2004) Of mice and dogs: species-specific differences in the inflammatory response following myocardial infarction. Am J Pathol 164(2):665–677. https://doi.org/10.1016/S0002-9440(10)63154-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Furihata T, Kinugawa S, Takada S, Fukushima A, Takahashi M, Homma T, Masaki Y, Tsuda M, Matsumoto J, Mizushima W, Matsushima S, Yokota T, Tsutsui H (2016) The experimental model of transition from compensated cardiac hypertrophy to failure created by transverse aortic constriction in mice. Int J Cardiol Heart Vasc 11:24–28. https://doi.org/10.1016/j.ijcha.2016.03.007

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chaanine AH, Gordon RE, Kohlbrenner E, Benard L, Jeong D, Hajjar RJ (2013) Potential role of BNIP3 in cardiac remodeling, myocardial stiffness, and endoplasmic reticulum: mitochondrial calcium homeostasis in diastolic and systolic heart failure. Circ Heart Fail 6(3):572–583. https://doi.org/10.1161/CIRCHEARTFAILURE.112.000200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Wang JJ, Rau C, Avetisyan R, Ren S, Romay MC, Stolin G, Gong KW, Wang Y, Lusis AJ (2016) Genetic dissection of cardiac remodeling in an isoproterenol-induced heart failure mouse model. PLoS Genet 12(7):e1006038. https://doi.org/10.1371/journal.pgen.1006038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Robert J (2007) Preclinical assessment of anthracycline cardiotoxicity in laboratory animals: predictiveness and pitfalls. Cell Biol Toxicol 23(1):27–37. https://doi.org/10.1007/s10565-006-0142-9

    Article  PubMed  CAS  Google Scholar 

  44. Stenmark KR, Meyrick B, Galie N, Mooi WJ, McMurtry IF (2009) Animal models of pulmonary arterial hypertension: the hope for etiological discovery and pharmacological cure. Am J Physiol Lung Cell Mol Physiol 297(6):L1013–L1032. https://doi.org/10.1152/ajplung.00217.2009

    Article  PubMed  CAS  Google Scholar 

  45. Sata M, Maejima Y, Adachi F, Fukino K, Saiura A, Sugiura S, Aoyagi T, Imai Y, Kurihara H, Kimura K, Omata M, Makuuchi M, Hirata Y, Nagai R (2000) A mouse model of vascular injury that induces rapid onset of medial cell apoptosis followed by reproducible neointimal hyperplasia. J Mol Cell Cardiol 32(11):2097–2104. https://doi.org/10.1006/jmcc.2000.1238

    Article  PubMed  CAS  Google Scholar 

  46. Gabeler EE, van Hillegersberg R, Statius van Eps RG, Sluiter W, Gussenhoven EJ, Mulder P, van Urk H (2002) A comparison of balloon injury models of endovascular lesions in rat arteries. BMC Cardiovasc Disord 2:16

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lu DY, Chen EY, Wong DJ, Yamamoto K, Protack CD, Williams WT, Assi R, Hall MR, Sadaghianloo N, Dardik A (2014) Vein graft adaptation and fistula maturation in the arterial environment. J Surg Res 188(1):162–173. https://doi.org/10.1016/j.jss.2014.01.042

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ishikawa K, Aguero J, Tilemann L, Ladage D, Hammoudi N, Kawase Y, Santos-Gallego CG, Fish K, Levine RA, Hajjar RJ (2014) Characterizing preclinical models of ischemic heart failure: differences between LAD and LCx infarctions. Am J Physiol Heart Circ Physiol 307(10):H1478–H1486. https://doi.org/10.1152/ajpheart.00797.2013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Galvez-Monton C, Prat-Vidal C, Diaz-Guemes I, Crisostomo V, Soler-Botija C, Roura S, Llucia-Valldeperas A, Perea-Gil I, Sanchez-Margallo FM, Bayes-Genis A (2014) Comparison of two preclinical myocardial infarct models: coronary coil deployment versus surgical ligation. J Transl Med 12:137. https://doi.org/10.1186/1479-5876-12-137

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lavine SJ, Prcevski P, Held AC, Johnson V (1991) Experimental model of chronic global left ventricular dysfunction secondary to left coronary microembolization. J Am Coll Cardiol 18(7):1794–1803

    Article  CAS  PubMed  Google Scholar 

  51. Ishikawa K, Ladage D, Takewa Y, Yaniz E, Chen J, Tilemann L, Sakata S, Badimon JJ, Hajjar RJ, Kawase Y (2011) Development of a preclinical model of ischemic cardiomyopathy in swine. Am J Physiol Heart Circ Physiol 301(2):H530–H537. https://doi.org/10.1152/ajpheart.01103.2010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Ishikawa K, Watanabe S, Hammoudi N, Aguero J, Bikou O, Fish K, Hajjar RJ (2018) Reduced longitudinal contraction is associated with ischemic mitral regurgitation after posterior MI. Am J Physiol Heart Circ Physiol 314(2):H322–H329. ajpheart005462017. https://doi.org/10.1152/ajpheart.00546.2017

    Article  PubMed  Google Scholar 

  53. Beeri R, Chaput M, Guerrero JL, Kawase Y, Yosefy C, Abedat S, Karakikes I, Morel C, Tisosky A, Sullivan S, Handschumacher MD, Gilon D, Vlahakes GJ, Hajjar RJ, Levine RA (2010) Gene delivery of sarcoplasmic reticulum calcium ATPase inhibits ventricular remodeling in ischemic mitral regurgitation. Circ Heart Fail 3(5):627–634. https://doi.org/10.1161/CIRCHEARTFAILURE.109.891184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Hung J, Solis J, Guerrero JL, Braithwaite GJ, Muratoglu OK, Chaput M, Fernandez-Friera L, Handschumacher MD, Wedeen VJ, Houser S, Vlahakes GJ, Levine RA (2008) A novel approach for reducing ischemic mitral regurgitation by injection of a polymer to reverse remodel and reposition displaced papillary muscles. Circulation 118(14 Suppl):S263–S269. https://doi.org/10.1161/CIRCULATIONAHA.107.756502

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ojaimi C, Qanud K, Hintze TH, Recchia FA (2007) Altered expression of a limited number of genes contributes to cardiac decompensation during chronic ventricular tachypacing in dogs. Physiol Genomics 29(1):76–83

    Article  CAS  PubMed  Google Scholar 

  56. Watanabe S, Fish K, Bonnet G, Santos-Gallego CG, Leonardson L, Hajjar RJ, Ishikawa K (2018) Echocardiographic and hemodynamic assessment for predicting early clinical events in severe acute mitral regurgitation. Int J Cardiovasc Imaging 34(2):171–175

    Article  PubMed  Google Scholar 

  57. Alyono D, Ring WS, Anderson MR, Anderson RW (1984) Left ventricular adaptation to volume overload from large aortocaval fistula. Surgery 96(2):360–367

    PubMed  CAS  Google Scholar 

  58. Ishikawa K, Aguero J, Oh JG, Hammoudi N, Fish LA, Leonardson L, Picatoste B, Santos-Gallego CG, Fish KM, Hajjar RJ (2015) Increased stiffness is the major early abnormality in a pig model of severe aortic stenosis and predisposes to congestive heart failure in the absence of systolic dysfunction. J Am Heart Assoc 4(5). https://doi.org/10.1161/JAHA.115.001925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Munagala VK, Hart CYT, Burnett JC Jr, Meyer DM, Redfield MM (2005) Ventricular structure and function in aged dogs with renal hypertension: a model of experimental diastolic heart failure. Circulation 111(9):1128–1135

    Article  PubMed  PubMed Central  Google Scholar 

  60. Van Vleet JF, Greenwood LA, Ferrans VJ (1979) Pathologic features of adriamycin toxicosis in young pigs: nonskeletal lesions. Am J Vet Res 40(11):1537–1552

    PubMed  Google Scholar 

  61. Schmitto JD, Doerge H, Post H, Coulibaly M, Sellin C, Popov AF, Sossalla S, Schoendube FA (2009) Progressive right ventricular failure is not explained by myocardial ischemia in a pig model of right ventricular pressure overload. Eur J Cardiothorac Surg 35(2):229–234. https://doi.org/10.1016/j.ejcts.2008.09.010

    Article  PubMed  Google Scholar 

  62. Aguero J, Ishikawa K, Fish KM, Hammoudi N, Hadri L, Garcia-Alvarez A, Ibanez B, Fuster V, Hajjar RJ, Leopold JA (2015) Combination proximal pulmonary artery coiling and distal embolization induces chronic elevations in pulmonary artery pressure in Swine. PLoS One 10(4):e0124526. https://doi.org/10.1371/journal.pone.0124526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Aguero J, Ishikawa K, Hadri L, Santos-Gallego C, Fish K, Hammoudi N, Chaanine A, Torquato S, Naim C, Ibanez B, Pereda D, Garcia-Alvarez A, Fuster V, Sengupta PP, Leopold JA, Hajjar RJ (2014) Characterization of right ventricular remodeling and failure in a chronic pulmonary hypertension model. Am J Physiol Heart Circ Physiol 307(8):H1204–H1215. https://doi.org/10.1152/ajpheart.00246.2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Fan J, Kitajima S, Watanabe T, Xu J, Zhang J, Liu E, Chen YE (2015) Rabbit models for the study of human atherosclerosis: from pathophysiological mechanisms to translational medicine. Pharmacol Ther 146:104–119

    Article  CAS  PubMed  Google Scholar 

  65. Kloster BO, Lund L, Lindholt JS (2015) Induction of continuous expanding infrarenal aortic aneurysms in a large porcine animal model. Ann Med Surg (Lond) 4(1):30–35

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by NIH R01 HL139963 (K.I.), AHA-SDG 17SDG33410873 (K.I.), and AHA 17POST33410877 (J.G.O.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyotake Ishikawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Oh, J.G., Ishikawa, K. (2018). Experimental Models of Cardiovascular Diseases: Overview. In: Ishikawa, K. (eds) Experimental Models of Cardiovascular Diseases. Methods in Molecular Biology, vol 1816. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8597-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8597-5_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8596-8

  • Online ISBN: 978-1-4939-8597-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics