Skip to main content

High-Resolution AFM-Based Force Spectroscopy

Part of the Methods in Molecular Biology book series (MIMB,volume 1814)

Abstract

Atomic force microscopy (AFM)-based force spectroscopy is a powerful technique which has seen significant enhancements in both force and time resolution in recent years. This chapter details two AFM cantilever modification procedures that yield high force precision over different temporal bandwidths. Specifically, it explains a fairly straightforward method to achieve sub-pN force precision and stability at low frequencies (<50 Hz) by removing the metal coatings from a commercially available cantilever. A more involved procedure utilizing a focused ion beam milling machine is required to maintain high force precision at enhanced bandwidths. Both modification methods allow site-specific attachment of biomolecules onto the apex area of the tips for force spectroscopy. The chapter concludes with a comparative demonstration using the two cantilever modification methods to study a lipid-protein interaction.

Key words

  • Atomic force microscopy
  • Cantilever
  • Tips
  • Functionalization
  • FIB
  • Peptide
  • Lipid bilayer
  • Interaction

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-8591-3_4
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-8591-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Muller DJ (2008) AFM: a nanotool in membrane biology. Biochemistry 47(31):7986–7998

    CrossRef  CAS  PubMed  Google Scholar 

  2. Rief M et al (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276(5315):1109–1112

    CrossRef  CAS  PubMed  Google Scholar 

  3. Borgia A, Williams PM, Clarke J (2008) Single-molecule studies of protein folding. Annu Rev Biochem 77:101–125

    CrossRef  CAS  PubMed  Google Scholar 

  4. Kim BH, Lyubchenko YL (2014) Nanoprobing of misfolding and interactions of amyloid beta 42 protein. Nanomedicine 10(4):871–878

    CrossRef  CAS  PubMed  Google Scholar 

  5. Oesterhelt F et al (2000) Unfolding pathways of individual bacteriorhodopsins. Science 288(5463):143–146

    CrossRef  CAS  PubMed  Google Scholar 

  6. Bippes C, Müller D (2011) High-resolution atomic force microscopy and spectroscopy of native membrane proteins. Rep Prog Phys 74:086601

    CrossRef  CAS  Google Scholar 

  7. Petrosyan R et al (2015) Single-molecule force spectroscopy of membrane proteins from membranes freely spanning across nanoscopic pores. Nano Lett 15(5):3624–3633

    CrossRef  CAS  PubMed  Google Scholar 

  8. Yu H et al (2017) Hidden dynamics in the unfolding of individual bacteriorhodopsin proteins. Science 355(6328):945–950

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  9. Matin TR et al (2017) Single-molecule peptide-lipid affinity assay reveals interplay between solution structure and partitioning. Langmuir 33(16):4057–4065

    CrossRef  PubMed  CAS  Google Scholar 

  10. Ganchev DN et al (2004) Strength of integration of transmembrane alpha-helical peptides in lipid bilayers as determined by atomic force spectroscopy. Biochemistry 43(47):14987–14993

    CrossRef  PubMed  CAS  Google Scholar 

  11. Desmeules P et al (2002) Measurement of membrane binding between recoverin, a calcium-myristoyl switch protein, and lipid bilayers by AFM-based force spectroscopy. Biophys J 82(6):3343–3350

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  12. Andre G, Brasseur R, Dufrene YF (2007) Probing the interaction forces between hydrophobic peptides and supported lipid bilayers using AFM. J Mol Recognit 20(6):538–545

    CrossRef  CAS  PubMed  Google Scholar 

  13. Schwierz N et al (2016) Mechanism of reversible peptide-bilayer attachment: combined simulation and experimental single-molecule study. Langmuir 32(3):810–821

    CrossRef  CAS  PubMed  Google Scholar 

  14. Churnside AB et al (2012) Routine and timely sub-picoNewton force stability and precision for biological applications of atomic force microscopy. Nano Lett 12(7):3557–3561

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  15. Edwards DT et al (2015) Optimizing 1-mus-resolution single-molecule force spectroscopy on a commercial atomic force microscope. Nano Lett 15(10):7091–7098

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  16. Walder R et al (2017) Rapid characterization of a mechanically labile alpha-helical protein enabled by efficient site-specific bioconjugation. J Am Chem Soc 139(29):9867–9875

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  17. Faulk JK et al (2017) Improved force spectroscopy using focused-ion-beam-modified cantilevers. Methods Enzymol 582:321

    CrossRef  CAS  PubMed  Google Scholar 

  18. Edwards DT, Perkins TT (2017) Optimizing force spectroscopy by modifying commercial cantilevers: improved stability, precision, and temporal resolution. J Struct Biol 197(1):13–25

    CrossRef  PubMed  Google Scholar 

  19. Zimmermann JL et al (2010) Thiol-based, site-specific and covalent immobilization of biomolecules for single-molecule experiments. Nat Protoc 5(6):975–985

    CrossRef  CAS  PubMed  Google Scholar 

  20. Mingeot-Leclercq MP et al (2008) Atomic force microscopy of supported lipid bilayers. Nat Protoc 3(10):1654–1659

    CrossRef  PubMed  Google Scholar 

  21. Sigdel KP, Grayer JS, King GM (2013) Three-dimensional atomic force microscopy: interaction force vector by direct observation of tip trajectory. Nano Lett 13(11):5106–5111

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation CAREER Award 1054832 (G.M.K.), a Burroughs Wellcome Fund Career Award at the Scientific Interface (G.M.K.), and the MU Research Board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavin M. King .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Sigdel, K.P., Pittman, A.E., Matin, T.R., King, G.M. (2018). High-Resolution AFM-Based Force Spectroscopy. In: Lyubchenko, Y. (eds) Nanoscale Imaging. Methods in Molecular Biology, vol 1814. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8591-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8591-3_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8590-6

  • Online ISBN: 978-1-4939-8591-3

  • eBook Packages: Springer Protocols