Advertisement

High-Resolution AFM-Based Force Spectroscopy

  • Krishna P. Sigdel
  • Anna E. Pittman
  • Tina R. Matin
  • Gavin M. King
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1814)

Abstract

Atomic force microscopy (AFM)-based force spectroscopy is a powerful technique which has seen significant enhancements in both force and time resolution in recent years. This chapter details two AFM cantilever modification procedures that yield high force precision over different temporal bandwidths. Specifically, it explains a fairly straightforward method to achieve sub-pN force precision and stability at low frequencies (<50 Hz) by removing the metal coatings from a commercially available cantilever. A more involved procedure utilizing a focused ion beam milling machine is required to maintain high force precision at enhanced bandwidths. Both modification methods allow site-specific attachment of biomolecules onto the apex area of the tips for force spectroscopy. The chapter concludes with a comparative demonstration using the two cantilever modification methods to study a lipid-protein interaction.

Key words

Atomic force microscopy Cantilever Tips Functionalization FIB Peptide Lipid bilayer Interaction 

Notes

Acknowledgments

This work was supported by National Science Foundation CAREER Award 1054832 (G.M.K.), a Burroughs Wellcome Fund Career Award at the Scientific Interface (G.M.K.), and the MU Research Board.

References

  1. 1.
    Muller DJ (2008) AFM: a nanotool in membrane biology. Biochemistry 47(31):7986–7998CrossRefPubMedGoogle Scholar
  2. 2.
    Rief M et al (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276(5315):1109–1112CrossRefPubMedGoogle Scholar
  3. 3.
    Borgia A, Williams PM, Clarke J (2008) Single-molecule studies of protein folding. Annu Rev Biochem 77:101–125CrossRefPubMedGoogle Scholar
  4. 4.
    Kim BH, Lyubchenko YL (2014) Nanoprobing of misfolding and interactions of amyloid beta 42 protein. Nanomedicine 10(4):871–878CrossRefPubMedGoogle Scholar
  5. 5.
    Oesterhelt F et al (2000) Unfolding pathways of individual bacteriorhodopsins. Science 288(5463):143–146CrossRefPubMedGoogle Scholar
  6. 6.
    Bippes C, Müller D (2011) High-resolution atomic force microscopy and spectroscopy of native membrane proteins. Rep Prog Phys 74:086601CrossRefGoogle Scholar
  7. 7.
    Petrosyan R et al (2015) Single-molecule force spectroscopy of membrane proteins from membranes freely spanning across nanoscopic pores. Nano Lett 15(5):3624–3633CrossRefPubMedGoogle Scholar
  8. 8.
    Yu H et al (2017) Hidden dynamics in the unfolding of individual bacteriorhodopsin proteins. Science 355(6328):945–950CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Matin TR et al (2017) Single-molecule peptide-lipid affinity assay reveals interplay between solution structure and partitioning. Langmuir 33(16):4057–4065CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ganchev DN et al (2004) Strength of integration of transmembrane alpha-helical peptides in lipid bilayers as determined by atomic force spectroscopy. Biochemistry 43(47):14987–14993CrossRefPubMedGoogle Scholar
  11. 11.
    Desmeules P et al (2002) Measurement of membrane binding between recoverin, a calcium-myristoyl switch protein, and lipid bilayers by AFM-based force spectroscopy. Biophys J 82(6):3343–3350CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Andre G, Brasseur R, Dufrene YF (2007) Probing the interaction forces between hydrophobic peptides and supported lipid bilayers using AFM. J Mol Recognit 20(6):538–545CrossRefPubMedGoogle Scholar
  13. 13.
    Schwierz N et al (2016) Mechanism of reversible peptide-bilayer attachment: combined simulation and experimental single-molecule study. Langmuir 32(3):810–821CrossRefPubMedGoogle Scholar
  14. 14.
    Churnside AB et al (2012) Routine and timely sub-picoNewton force stability and precision for biological applications of atomic force microscopy. Nano Lett 12(7):3557–3561CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Edwards DT et al (2015) Optimizing 1-mus-resolution single-molecule force spectroscopy on a commercial atomic force microscope. Nano Lett 15(10):7091–7098CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Walder R et al (2017) Rapid characterization of a mechanically labile alpha-helical protein enabled by efficient site-specific bioconjugation. J Am Chem Soc 139(29):9867–9875CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Faulk JK et al (2017) Improved force spectroscopy using focused-ion-beam-modified cantilevers. Methods Enzymol 582:321CrossRefPubMedGoogle Scholar
  18. 18.
    Edwards DT, Perkins TT (2017) Optimizing force spectroscopy by modifying commercial cantilevers: improved stability, precision, and temporal resolution. J Struct Biol 197(1):13–25CrossRefPubMedGoogle Scholar
  19. 19.
    Zimmermann JL et al (2010) Thiol-based, site-specific and covalent immobilization of biomolecules for single-molecule experiments. Nat Protoc 5(6):975–985CrossRefPubMedGoogle Scholar
  20. 20.
    Mingeot-Leclercq MP et al (2008) Atomic force microscopy of supported lipid bilayers. Nat Protoc 3(10):1654–1659CrossRefPubMedGoogle Scholar
  21. 21.
    Sigdel KP, Grayer JS, King GM (2013) Three-dimensional atomic force microscopy: interaction force vector by direct observation of tip trajectory. Nano Lett 13(11):5106–5111CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Krishna P. Sigdel
    • 1
  • Anna E. Pittman
    • 1
  • Tina R. Matin
    • 2
    • 1
  • Gavin M. King
    • 1
    • 3
  1. 1.Department of Physics and AstronomyUniversity of MissouriColumbiaUSA
  2. 2.Department of AnesthesiologyWeill Cornell MedicineNew YorkUSA
  3. 3.Department of BiochemistryUniversity of MissouriColumbiaUSA

Personalised recommendations