Skip to main content

Time-Resolved Imaging of Bacterial Surfaces Using Atomic Force Microscopy

  • Protocol
  • First Online:
Nanoscale Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1814))

Abstract

Time-resolved atomic force microscopy (AFM) offers countless new modes by which to study bacterial cell physiology on relevant time scales, from mere milliseconds to hours and days on end. In addition, time-lapse AFM acts as a complementary tool to optical fluorescence microscopy (OFM), for which the combination offers a correlative link between the physical manifestation of bacterial phenotypes and molecular mechanisms obeying those principles. Herein we describe the essential materials and methods necessary for conducting time-resolved AFM and dual AFM/OFM experiments on bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ando T, Uchihashi T, Scheuring S (2014) Filming biomolecular processes by high-speed atomic force microscopy. Chem Rev 114(6):3120–3188. https://doi.org/10.1021/cr4003837

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Eskandarian HA et al (2017) Division site selection linked to inherited cell surface wave troughs in mycobacteria. Nat Microbiol 2(9):17094. https://doi.org/10.1038/Nmicrobiol.2017.94

    Article  PubMed  CAS  Google Scholar 

  3. Fantner GE et al (2010) Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force microscopy. Nat Nanotechnol 5(4):280–285. https://doi.org/10.1038/nnano.2010.29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Watanabe H et al (2013) Wide-area scanner for high-speed atomic force microscopy. Rev Sci Instrum 84(5):053702. https://doi.org/10.1063/1.4803449

    Article  PubMed  CAS  Google Scholar 

  5. Yamashita H et al (2012) Single-molecule imaging on living bacterial cell surface by high-speed AFM. J Mol Biol 422(2):300–309. https://doi.org/10.1016/j.jmb.2012.05.018

    Article  PubMed  CAS  Google Scholar 

  6. Suo Z et al (2009) Antibody selection for immobilizing living bacteria. Anal Chem 81(18):7571–7578. https://doi.org/10.1021/ac9014484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Meyer RL et al (2010) Immobilisation of living bacteria for AFM imaging under physiological conditions. Ultramicroscopy 110(11):1349–1357. https://doi.org/10.1016/j.ultramic.2010.06.010

    Article  CAS  Google Scholar 

  8. Dufrene YF (2008) Atomic force microscopy and chemical force microscopy of microbial cells. Nat Protoc 3(7):1132–1138. https://doi.org/10.1038/nprot.2008.101

    Article  PubMed  CAS  Google Scholar 

  9. Butt HJ, Downing KH, Hansma PK (1990) Imaging the membrane protein bacteriorhodopsin with the atomic force microscope. Biophys J 58(6):1473–1480. https://doi.org/10.1016/S0006-3495(90)82492-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Camesano TA, Natan MJ, Logan BE (2000) Observation of changes in bacterial cell morphology using tapping mode atomic force microscopy. Langmuir 16(10):4563–4572. https://doi.org/10.1021/La990805o

    Article  CAS  Google Scholar 

  11. Hoh JH et al (1993) Structure of the extracellular surface of the gap junction by atomic force microscopy. Biophys J 65(1):149–163. https://doi.org/10.1016/S0006-3495(93)81074-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Velegol SB, Logan BE (2002) Contributions of bacterial surface polymers, electrostatics, and cell elasticity to the shape of AFM force curves. Langmuir 18(13):5256–5262. https://doi.org/10.1021/La011818g

    Article  CAS  Google Scholar 

  13. Colville K et al (2010) Effects of poly(L-lysine) substrates on attached Escherichia coli bacteria. Langmuir 26(4):2639–2644. https://doi.org/10.1021/la902826n

    Article  PubMed  CAS  Google Scholar 

  14. Liu Y, Strauss J, Camesano TA (2008) Adhesion forces between Staphylococcus epidermidis and surfaces bearing self-assembled monolayers in the presence of model proteins. Biomaterials 29(33):4374–4382. https://doi.org/10.1016/j.biomaterials.2008.07.044

    Article  PubMed  CAS  Google Scholar 

  15. Micic M et al (2004) Correlated atomic force microscopy and fluorescence lifetime imaging of live bacterial cells. Colloids Surf B Biointerfaces 34(4):205–212. https://doi.org/10.1016/j.colsurfb.2003.10.020

    Article  PubMed  CAS  Google Scholar 

  16. Hett EC, Rubin EJ (2008) Bacterial growth and cell division: a mycobacterial perspective. Microbiol Mol Biol Rev 72(1):126–156, table of contents. https://doi.org/10.1128/MMBR.00028-07

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Wakamoto Y et al (2013) Dynamic persistence of antibiotic-stressed mycobacteria. Science 339(6115):91–95. https://doi.org/10.1126/science.1229858

    Article  PubMed  CAS  Google Scholar 

  18. Mendez-Vilas A, Gallardo-Moreno AM, Gonzalez-Martin ML (2007) Atomic force microscopy of mechanically trapped bacterial cells. Microsc Microanal 13(1):55–64. https://doi.org/10.1017/S1431927607070043

    Article  PubMed  CAS  Google Scholar 

  19. Mendez-Vilas A et al (2008) AFM probing in aqueous environment of Staphylococcus epidermidis cells naturally immobilised on glass: physico-chemistry behind the successful immobilisation. Colloids Surf B Biointerfaces 63(1):101–109. https://doi.org/10.1016/j.colsurfb.2007.11.011

    Article  PubMed  CAS  Google Scholar 

  20. Fritz M et al (1994) Visualization and identification of intracellular structures by force modulation microscopy and drug-induced degradation. J Vac Sci Technol B 12(3):1526–1529. https://doi.org/10.1116/1.587278

    Article  CAS  Google Scholar 

  21. Ando T et al (2001) A high-speed atomic force microscope for studying biological macromolecules. Proc Natl Acad Sci U S A 98(22):12468–12472. https://doi.org/10.1073/pnas.211400898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Casuso I et al (2012) Characterization of the motion of membrane proteins using high-speed atomic force microscopy. Nat Nanotechnol 7(8):525–529. https://doi.org/10.1038/nnano.2012.109

    Article  PubMed  CAS  Google Scholar 

  23. Kindt JH et al (2002) Atomic force microscope detector drift compensation by correlation of similar traces acquired at different setpoints. Rev Sci Instrum 73(6):2305–2307. https://doi.org/10.1063/1.1475352

    Article  CAS  Google Scholar 

  24. Fantner GE et al (2005) Data acquisition system for high speed atomic force microscopy. Rev Sci Instrum 76(2):026118. https://doi.org/10.1063/1.1850651

    Article  CAS  Google Scholar 

  25. Fantner GE et al (2006) Components for high speed atomic force microscopy. Ultramicroscopy 106(8–9):881–887. https://doi.org/10.1016/j.ultramic.2006.01.015

    Article  PubMed  CAS  Google Scholar 

  26. Nievergelt AP, et al. (2017) Components for high-speed atomic force microscopy optimized for low phase-lag. 2017 I.E. International Conference on Advanced Intelligent Mechatronics (AIM). p 731–736. doi:https://doi.org/10.1109/AIM.2017.8014104

  27. Hu DH et al (2003) Correlated topographic and spectroscopic imaging beyond diffraction limit by atomic force microscopy metallic tip-enhanced near-field fluorescence lifetime microscopy. Rev Sci Instrum 74(7):3347–3355. https://doi.org/10.1063/1.1581359

    Article  CAS  Google Scholar 

  28. Adams JD et al (2014) High-speed imaging upgrade for a standard sample scanning atomic force microscope using small cantilevers. Rev Sci Instrum 85(9):093702. https://doi.org/10.1063/1.4895460

    Article  PubMed  CAS  Google Scholar 

  29. Nievergelt AP et al (2014) High-frequency multimodal atomic force microscopy. Beilstein J Nanotechnol 5:2459–2467. https://doi.org/10.3762/bjnano.5.255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Burns DJ, Youcef-Toumi K, Fantner GE (2011) Indirect identification and compensation of lateral scanner resonances in atomic force microscopes. Nanotechnology 22(31):315701. https://doi.org/10.1088/0957-4484/22/31/315701

    Article  PubMed  CAS  Google Scholar 

  31. Kammer CM, et al. Data-driven controller design for atomic-force microscopy In: 20th World Congress of IFAC2017: Toulouse, France

    Google Scholar 

  32. Nievergelt AP et al (2015) Studying biological membranes with extended range high-speed atomic force microscopy. Sci Rep 5:11987. https://doi.org/10.1038/srep11987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Lonergan NE, Britt LD, Sullivan CJ (2014) Immobilizing live Escherichia coli for AFM studies of surface dynamics. Ultramicroscopy 137:30–39. https://doi.org/10.1016/j.ultramic.2013.10.017

    Article  PubMed  CAS  Google Scholar 

  34. Johansson J et al (2002) An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell 110(5):551–561

    Article  PubMed  Google Scholar 

  35. Deng Y, Sun M, Shaevitz JW (2011) Direct measurement of cell wall stress stiffening and turgor pressure in live bacterial cells. Phys Rev Lett 107(15):158101. https://doi.org/10.1103/PhysRevLett.107.158101

    Article  PubMed  CAS  Google Scholar 

  36. Polyakov P et al (2011) Automated force volume image processing for biological samples. PLoS One 6(4):e18887. https://doi.org/10.1371/journal.pone.0018887

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Raman A et al (2011) Mapping nanomechanical properties of live cells using multi-harmonic atomic force microscopy. Nat Nanotechnol 6(12):809–814. https://doi.org/10.1038/nnano.2011.186

    Article  PubMed  CAS  Google Scholar 

  38. Velegol SB et al (2003) AFM imaging artifacts due to bacterial cell height and AFM tip geometry. Langmuir 19(3):851–857. https://doi.org/10.1021/la026440g

    Article  CAS  Google Scholar 

  39. Kindt JH et al (2004) Automated wafer-scale fabrication of electron beam deposited tips for atomic force microscopes using pattern recognition. Nanotechnology 15(9):1131–1134. https://doi.org/10.1088/0957-4484/15/9/005

    Article  CAS  Google Scholar 

  40. Erickson BW et al (2012) Large-scale analysis of high-speed atomic force microscopy data sets using adaptive image processing. Beilstein J Nanotechnol 3:747–758. https://doi.org/10.3762/bjnano.3.84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Eaton PJ, West P (2010) Atomic force microscopy, vol viii. Oxford University Press, Oxford; New York, p 248

    Book  Google Scholar 

  42. Odermatt PD et al (2015) High-resolution correlative microscopy: bridging the gap between single molecule localization microscopy and atomic force microscopy. Nano Lett 15(8):4896–4904. https://doi.org/10.1021/acs.nanolett.5b00572

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Swiss National Science Foundation under grant agreement numbers 205321_134786 and 205320_152675. H.A. Eskandarian acknowledges the support of an EMBO advanced long-term fellowship (LTF 191-2014 & ALTF 750-2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Ernest Fantner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Eskandarian, H.A., Nievergelt, A.P., Fantner, G.E. (2018). Time-Resolved Imaging of Bacterial Surfaces Using Atomic Force Microscopy. In: Lyubchenko, Y. (eds) Nanoscale Imaging. Methods in Molecular Biology, vol 1814. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8591-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8591-3_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8590-6

  • Online ISBN: 978-1-4939-8591-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics