Kornberg RD (1977) Structure of chromatin. Ann Rev Biochem 46:931–954
CrossRef
PubMed
CAS
Google Scholar
Richmond RK, Sargent DF, Richmond TJ, Luger K, Mader AW (1997) Crystal structure of the nucleosome resolution core particle at 2.8 A. Nature 389:251–260
CrossRef
PubMed
CAS
Google Scholar
Dorigo B et al (2004) Nucleosome arrays reveal the two-start organization of the chromatin fiber. Science 306:1571–1573
CrossRef
CAS
PubMed
Google Scholar
Chen Q, Yang R, Korolev N, Fa Liu C, Nordenskiöld L (2017) Regulation of nucleosome stacking and chromatin compaction by the histone H4 N-terminal tail -H2A acidic patch interaction. J Mol Biol 429(13):2075–2092
CrossRef
PubMed
CAS
Google Scholar
Kaczmarczyk A, Allahverdi A, Brouwer TB, Nordenskiöld L, Dekker NH, van Noort J (2017) Single-molecule force spectroscopy on histone H4 tail cross-linked chromatin reveals fiber folding. J Biol Chem 292:17506–17513
CrossRef
CAS
PubMed
PubMed Central
Google Scholar
Gilbert N, Ramsahoye B (2005) The relationship between chromatin structure and transcriptional activity in mammalian genomes. Brief Funct Genomic Proteomic 4:129–142
CrossRef
CAS
PubMed
Google Scholar
Workman JL, Kingston RE (1998) Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu Rev Biochem 67:545–579
CrossRef
PubMed
CAS
Google Scholar
Widom J (2001) Role of DNA sequence in nucleosome stability and dynamics. Q Rev Biophys 34:269–324
CrossRef
CAS
PubMed
Google Scholar
Bowman GD, Poirier MG (2015) Post-translational modifications of histones that influence nucleosome dynamics. Chem Rev 115:2274–2295
CrossRef
PubMed
CAS
Google Scholar
Luger K, Richmond TJ (1998) The histone tails of the nucleosome. Curr Opin Genet Dev 8:140–146
CrossRef
CAS
PubMed
Google Scholar
Schalch T, Duda S, Sargent DF, Richmond TJ (2005) X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature 436:138–141
CrossRef
PubMed
CAS
Google Scholar
Grigoryev SA (2012) Nucleosome spacing and chromatin higher-order folding. Nucleus 3:493–499
CrossRef
PubMed
PubMed Central
Google Scholar
Robinson PJJ, Fairall L, Huynh V a T, Rhodes D (2006) EM measurements define the dimensions of the ‘30-nm’ chromatin fiber: evidence for a compact, interdigitated structure. Proc Natl Acad Sci U S A 103:6506–6511
CrossRef
PubMed
PubMed Central
CAS
Google Scholar
Routh A, Sandin S, Rhodes D (2008) Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure. Proc Natl Acad Sci U S A 105:8872–8877
CrossRef
PubMed
PubMed Central
Google Scholar
Song F et al (2014) Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units. Science 344:376–380
CrossRef
PubMed
CAS
Google Scholar
Krzemien KM et al (2017) Atomic force microscopy of chromatin arrays reveal non-monotonic salt dependence of array compaction in solution. PLoS One 12:e0173459
CrossRef
PubMed
PubMed Central
CAS
Google Scholar
Kruithof M, Chien F, de Jager M, van Noort J (2008) Subpiconewton dynamic force spectroscopy using magnetic tweezers. Biophys J 94:2343–2348
CrossRef
PubMed
CAS
Google Scholar
Ordu O, Lusser A, Dekker NH (2016) Recent insights from in vitro single-molecule studies into nucleosome structure and dynamics. Biophys Rev 8:33–49
CrossRef
PubMed
PubMed Central
CAS
Google Scholar
Ribeck N, Saleh OA (2008) Multiplexed single-molecule measurements with magnetic tweezers. Rev Sci Instrum 79:94301
CrossRef
CAS
Google Scholar
De Vlaminck I et al (2011) Highly parallel magnetic tweezers by targeted DNA tethering. Nano Lett 11:5489–5493
CrossRef
CAS
PubMed
Google Scholar
Lusser A, Kadonaga JT (2004) Strategies for the reconstitution of chromatin. Nat Methods 1:19–26
CrossRef
PubMed
CAS
Google Scholar
Huynh VAT, Robinson PJJ, Rhodes D (2005) A method for the in vitro reconstitution of a defined ‘30 nm’ chromatin fibre containing stoichiometric amounts of the linker histone. J Mol Biol 345:957–968
CrossRef
PubMed
CAS
Google Scholar
Lowary PT, Widom J (1998) New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J Mol Biol 276:19–42
CrossRef
PubMed
CAS
Google Scholar
Flaus A (2011) Principles and practice of nucleosome positioning in vitro. Front Life Sci 5:5–27
CrossRef
CAS
Google Scholar
Strick TR, Allemand JF, Bensimon D, Bensimon A, Croquette V (1996) The elasticity of a single supercoiled DNA molecule. Science 271:1835–1837
CrossRef
PubMed
CAS
Google Scholar
Yu Z et al (2014) A force calibration standard for magnetic tweezers. Rev Sci Instrum 85:123114
CrossRef
PubMed
CAS
Google Scholar
Meng H, Andresen K, van Noort J (2015) Quantitative analysis of single-molecule force spectroscopy on folded chromatin fibers. Nucleic Acids Res 43:3578–3590
CrossRef
PubMed
PubMed Central
CAS
Google Scholar
Harada Y et al (2001) Direct observation of DNA rotation during transcription by Escherichia coli RNA polymerase. Nature 409:113–115
CrossRef
PubMed
CAS
Google Scholar
Lansdorp BM, Tabrizi SJ, Dittmore A, Saleh OA (2013) A high-speed magnetic tweezer beyond 10,000 frames per second. Rev Sci Instrum 84:44301
CrossRef
CAS
Google Scholar
Cnossen JP, Dulin D, Dekker NH (2014) An optimized software framework for real-time, high-throughput tracking of spherical beads. Cit Rev Sci Instruments 85:103712
CrossRef
CAS
Google Scholar