Skip to main content

Design and Characterization of pH-Triggered DNA Nanoswitches and Nanodevices Based on DNA Triplex Structures

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1811))

Abstract

Triplex DNA is becoming a very useful domain to design pH-triggered DNA nanoswitches and nanodevices. The high versatility and programmability of triplex DNA interactions allows the integration of pH-controllable modules into DNA-based reactions and self-assembly processes. Here, we describe the procedure to characterize DNA-based triplex nanoswitches and more in general pH-triggered structure-switching mechanisms. Procedures to characterize pH-triggered DNA nanodevices will be useful for many applications in the field of biosensing, drug delivery systems and smart nanomaterials.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lukin JA, Ho C (2004) The structure-function relationship of hemoglobin in solution at atomic resolution. Chem Rev 104:1219–1230

    Article  CAS  Google Scholar 

  2. McLachlan GD, Cahill SM, Girvin ME, Almo SC (2007) Acid-induced equilibrium folding intermediate of human platelet profiling. Biochemistry 46:6931–6943

    Article  CAS  Google Scholar 

  3. Nishi T, Forgac M (2002) The vacuolar (H+)-ATPases – nature’s most versatile proton pumps. Nat Rev Mol Cell Biol 3:94–103

    Article  CAS  Google Scholar 

  4. Slepkov ER, Rainey JK, Sykes BD, Fliegel L (2007) Structural and functional analysis of the Na+/H+ exchanger. Biochem J 401:623–633

    Article  CAS  Google Scholar 

  5. Matsuyama S, Llopis J, Deveraux QL, Tsien RY, Reed JC (2000) Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nat Cell Biol 2:318–325

    Article  CAS  Google Scholar 

  6. Paroutis P, Touret N, Grinstein S (2004) The pH of the secretory pathway: measurement, determinants, and regulation. Physiology 19:207–215

    Article  CAS  Google Scholar 

  7. Busa WB, Nuccitelli R (1984) Metabolic regulation via intracellular pH. Am J Phys 246:R409–R438

    CAS  Google Scholar 

  8. Tews I, Findeisen F, Sinning I, Schultz A, Schultz JE, Linder JU (2005) The structure of a pH-sensing mycobacterial adenylyl cyclase holoenzyme. Science 308:1020–1023

    Article  CAS  Google Scholar 

  9. Webb BA, Chimenti M, Jacobson MP, Barber DL (2011) Dysregulated pH: a perfect storm for cancer progression. Nat Rev Cancer 11:671–677

    Article  CAS  Google Scholar 

  10. Zhou K, Liu H, Zhang S, Huang X, Wang Y, Huang G, Sumer BD, Gao J (2012) Multicolored pH-tunable and activatable fluorescence nanoplatform responsive to physiologic pH stimuli. J Am Chem Soc 134:7803–7811

    Article  CAS  Google Scholar 

  11. Gallagher FA, Kettunen MI, Day SE, Hu D-E, Ardenkjær-Larsen JH, Zandt RI, Jensen PR, Karlsson M, Golman K, Lerche MH, Brindle KM (2008) Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature 453:940–943

    Article  CAS  Google Scholar 

  12. Saha S, Prakash V, Halder S, Chakraborty K, Krishnan Y (2015) A pH-independent DNA nanodevice for quantifying chloride transport in organelles of living cells. Nat Nanotechnol 10:645–651

    Article  CAS  Google Scholar 

  13. Bath J, Turberfield AJ (2007) DNA nanomachines. Nat Nanotechnol 2:275–284

    Article  CAS  Google Scholar 

  14. Seeman NC (2010) Nanomaterials based on DNA. Annu Rev Biochem 79:65–87

    Article  CAS  Google Scholar 

  15. Dittmer WU, Reuter A, Simmel FC (2004) A DNA-based machine that can cyclically bind and release thrombin. Angew Chem Int Ed 43:3550–3553

    Article  CAS  Google Scholar 

  16. Douglas SM, Bachelet I, Church GM (2012) A logic-gated nanorobot for targeted transport of molecular payloads. Science 335:831–834

    Article  CAS  Google Scholar 

  17. Zhou C, Yang Z, Liu D (2012) Reversible regulation of protein binding affinity by a DNA machine. J Am Chem Soc 134:1416–1418

    Article  CAS  Google Scholar 

  18. Thomas JM, Yu H-Z, Sen D (2012) A mechano-electronic DNA switch. J Am Chem Soc 134:13738–13748

    Article  CAS  Google Scholar 

  19. Gareau D, Desrosiers A, Vallée-Bélisle A (2016) Programmable quantitative DNA nanothermometers. Nano Lett 16:3976–3981

    Article  CAS  Google Scholar 

  20. Ranallo S, Rossetti M, Plaxco KW, Vallée-Bélisle A, Ricci F (2015) A modular, DNA-based beacon for single-step fluorescence detection of antibodies and other proteins. Angew Chem Int Ed 54:13214–13218

    Article  CAS  Google Scholar 

  21. Andersen ES, Dong M, Nielsen MM, Jahn K, Subramani R, Mamdouh W, Golas MM, Sander B, Stark H, Oliveira CLP, Pedersen JS, Birkedal V, Besenbacher F, Gothelf KV, Kjems J (2009) Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459:73–76

    Article  CAS  Google Scholar 

  22. Shimron S, Magen N, Elbaz J, Willner I (2011) pH-programmable DNAzyme nanostructures. Chem Commun 47:8787–8789

    Article  CAS  Google Scholar 

  23. Wang Z-G, Elbaz J, Willner I (2011) DNA machines: bipedal walker and stepper. Nano Lett 11:304–309

    Article  CAS  Google Scholar 

  24. Li T, Famulok M (2013) I-motif-programmed functionalization of DNA nanocircles. J Am Chem Soc 135:1593–1599

    Article  CAS  Google Scholar 

  25. Liu D, Balasubramanian S (2003) A proton-fuelled DNA Nanomachine. Angew Chem Int Ed 42:5734–5736

    Article  CAS  Google Scholar 

  26. Liu D, Bruckbauer A, Abell C, Balasubramanian S, Kang D-J, Klenerman D, Zhou D (2006) A reversible pH-driven DNA nanoswitch array. J Am Chem Soc 128:2067–2071

    Article  CAS  Google Scholar 

  27. Zhou J, Amrane S, Korkut DN, Bourdoncle A, He H-Z, Ma D-L, Mergny J-L (2013) Combination of i-motif and G-quadruplex structures within the same strand: formation and application. Angew Chem Int Ed 52:7742–7746

    Article  CAS  Google Scholar 

  28. Brucale M, Zuccheri G, Samorì B (2005) The dynamic properties of an intramolecular transition from DNA duplex to cytosine-thymine motif triplex. Org Biomol Chem 3:575–577

    Article  CAS  Google Scholar 

  29. Modi S, Swetha MG, Goswami D, Gupta GD, Mayor S, Krishnan Y (2009) A DNA nanomachine maps spatiotemporal pH changes in living cells. Nat Nanotechnol 4:325–330

    Article  CAS  Google Scholar 

  30. Chen L, Di J, Cao C, Zhao Y, Ma Y, Luo J, Wen Y, Song W, Song Y, Jiang L (2011) A pH-driven DNA nanoswitch for responsive controlled release. Chem Commun 47:2850–2852

    Article  CAS  Google Scholar 

  31. Chen Y, Lee S-H, Mao C (2004) A DNA nanomachine based on a duplex-triplex transition. Angew Chem Int Ed 43:5335–5338

    Article  CAS  Google Scholar 

  32. Wang W, Yang Y, Cheng E, Zhao M, Meng H, Liu D, Zhou D (2009) A pH-driven, reconfigurable DNA nanotriangle. Chem Commun (7):824–826

    Google Scholar 

  33. Liedl T, Simmel FC (2005) Switching the conformation of a DNA molecule with a chemical oscillator. Nano Lett 5:1894–1898

    Article  CAS  Google Scholar 

  34. Liu H, Xu Y, Li F, Yang Y, Wang W, Song Y, Liu D (2007) Light-driven conformational switch of i-motif DNA. Angew Chem Int Ed 46:2515–2517

    Article  CAS  Google Scholar 

  35. Han X, Zhou Z, Yang F, Deng Z (2008) Catch and release: DNA tweezers that can capture, hold, and release an object under control. J Am Chem Soc 130:14414–14415

    Article  CAS  Google Scholar 

  36. Yang M, Zhang X, Liu H, Kang H, Zhu Z, Yang W, Tan W (2015) Stable DNA nanomachine based on duplex-triplex transition for ratiometric imaging instantaneous pH changes in living cells. Anal Chem 87:5854–5859

    Article  CAS  Google Scholar 

  37. Li X-M, Song J, Cheng T, Fu P-Y (2013) A duplex-triplex nucleic acid nanomachine that probes pH changes inside living cells during apoptosis. Anal Bioanal Chem 405:5993–5999

    Article  CAS  Google Scholar 

  38. Saha S, Chakraborty K, Krishnan Y (2012) Tunable, colorimetric DNA-based pH sensors mediated by A-motif formation. Chem Commun 48:2513–2515

    Article  CAS  Google Scholar 

  39. Chakraborty S, Sharma S, Maiti PK, Krishnan Y (2009) The poly dA helix: a new structural motif for high performance DNA-based molecular switches. Nucleic Acids Res 37:2810–2817

    Article  CAS  Google Scholar 

  40. Ohmichi T, Kawamoto Y, Wu P, Miyoshi D, Karimata H, Sugimoto N (2005) DNA-based biosensor for monitoring pH in vitro and in living cells. Biochemistry 44:7125–7130

    Article  CAS  Google Scholar 

  41. Nesterova IV, Nesterov EE (2014) Rational design of highly responsive pH sensors based on DNA i-motif. J Am Chem Soc 136:8843–8846

    Article  CAS  Google Scholar 

  42. Hu Y, Cecconello A, Idili A, Ricci F, Willner I (2017) Triplex DNA nanostructures: from basic properties to applications. Angew Chem Int Ed. https://doi.org/10.1002/ange.201701868

    Article  Google Scholar 

  43. Idili A, Vallée-Bélisle A, Ricci F (2014) Programmable pH-triggered DNA nanoswitches. J Am Chem Soc 136:5836–5839

    Article  CAS  Google Scholar 

  44. Amodio A, Zhao B, Porchetta A, Idili A, Castronovo M, Fan C, Ricci F (2014) Rational design of pH-controlled DNA strand displacement. J Am Chem Soc 136:16469–16472

    Article  CAS  Google Scholar 

  45. Porchetta A, Idili A, Vallée-Bélisle A, Ricci F (2015) General strategy to introduce pH-induced allostery in DNA-based receptors to achieve controlled release of ligands. Nano Lett 15:4467–4471

    Article  CAS  Google Scholar 

  46. Idili A, Porchetta A, Amodio A, Vallée-Bélisle A, Ricci F (2015) Controlling hybridization chain reactions with pH. Nano Lett 15:5539–5544

    Article  CAS  Google Scholar 

  47. Vasquez KM, Glazer PM (2002) Triplex-forming oligonucleotides: principles and applications. Q Rev Biophys 35:89–107

    Article  CAS  Google Scholar 

  48. Frank-Kamenetskii MD, Mirkin SM (1995) Triplex DNA structures. Annu Rev Biochem 64:65–95

    Article  CAS  Google Scholar 

  49. Radhakrishnan I (1994) DNA triplexes: solution structures, hydration sites, energetics, interactions, and function. Biochemistry 33:11405–11416

    Article  CAS  Google Scholar 

  50. Lee H-T, Arciniegas S, Marky LA (2008) Unfolding thermodynamics of DNA pyrimidine triplexes with different molecularities. J Phys Chem B 112:4833–4840

    Article  CAS  Google Scholar 

  51. Kolaric B, Sliwa M, Brucale M, Vallée RAL, Zuccheri G, Samori B, Hofkens J, De Schryver FC (2007) Single molecule fluorescence spectroscopy of pH sensitive oligonucleotide switches. Photochem Photobiol Sci 6:614–618

    Article  CAS  Google Scholar 

  52. Sugimoto N, Wu P, Hara H, Kawamoto Y (2001) pH and cation effects on the properties of parallel pyrimidine motif DNA triplexes. Biochemistry 40:9396–9405

    Article  CAS  Google Scholar 

  53. Leitner D, Schröder W, Weisz K (2000) Influence of sequence-dependent cytosine protonation and methylation on DNA triplex stability. Biochemistry 39:5886–5892

    Article  CAS  Google Scholar 

  54. Saenger W (1984) Principles of nucleic acid structure. Springer, New York

    Book  Google Scholar 

  55. Soto AM, Loo J, Marky LA (2002) Energetic contributions for the formation of TAT/TAT, TAT/CGC+, and CGC−/CGC+ base triplet stacks. J Am Chem Soc 124:14355–14363

    Article  CAS  Google Scholar 

  56. Asensio JL, Lane AN, Dhesi J, Bergqvist S, Brown T (1998) The contribution of cytosine protonation to the stability of parallel DNA triple helices. J Mol Biol 275:811–822

    Article  CAS  Google Scholar 

  57. Ferrell JE Jr (1996) Tripping the switch fantastic: how a protein kinase cascade can convert graded inputs into switch-like outputs. Trends Biochem Sci 21:460–466

    Article  CAS  Google Scholar 

  58. Vallée-Bélisle A, Ricci F, Plaxco KW (2012) Engineering biosensors with extended, narrowed, or arbitrarily edited dynamic range. J Am Chem Soc 134:2876–2879

    Article  Google Scholar 

  59. Seelig G, Soloveichik D, Zhang DY, Winfree E (2006) Enzyme-free nucleic acid logic circuits. Science 314:1585–1588

    Article  CAS  Google Scholar 

  60. Zhang DY, Seelig G (2011) Dynamic DNA nanotechnology using strand-displacement reactions. Nat Chem 3:103–113

    Article  CAS  Google Scholar 

  61. Idili A, Plaxco KW, Vallée-Bélisle A, Ricci F (2013) Thermodynamic basis for engineering high-affinity, high-specificity binding-induced DNA clamp Nanoswitches. ACS Nano 7:10863–10869

    Article  CAS  Google Scholar 

  62. Amodio A, Adedeji AF, Castronovo M, Franco E, Ricci F (2016) pH-controlled assembly of DNA tiles. J Am Chem Soc 138:12735–12738

    Article  CAS  Google Scholar 

  63. Dirks RM, Pierce NA (2004) Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci U S A 101:15275–15278

    Article  CAS  Google Scholar 

  64. Yin P, Choi HMT, Calvert CR, Pierce NA (2008) Programming biomolecular self-assembly pathways. Nature 451:318–322

    Article  CAS  Google Scholar 

  65. Sadowski JP, Calvert CR, Zhang DY, Pierce NA, Yin P (2014) Developmental self-assembly of a DNA tetrahedron. ACS Nano 8:3251–3259

    Article  CAS  Google Scholar 

  66. Nie Z, Wang P, Tian C, Mao C (2014) Synchronization of two assembly processes to build responsive DNA nanostructures. Angew Chem Int Ed 53:8402–8405

    Article  CAS  Google Scholar 

  67. Del Grosso E, Idili A, Porchetta A, Ricci F (2016) A modular clamp-like mechanism to regulate the activity of nucleic-acid target-responsive nanoswitches with external activators. Nanoscale 8:18057–18061

    Article  Google Scholar 

  68. Stojanovic MN, de Prada P, Landry DW (2001) Aptamer-based folding fluorescent sensor for cocaine. J Am Chem Soc 123:4928–4931

    Article  CAS  Google Scholar 

  69. Östling S, Virtama PA (1946) Modified preparation of the universal buffer described by Teorell and Stenhagen. Acta Phys Scand 11:289–293

    Article  Google Scholar 

  70. Panchuk-Voloshina N, Haugland RP, Bishop-Stewart J, Bhalgat MK, Millard PJ, Mao F, Leung WY, Haugland RP (1999) Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates. J Histochem Cytochem 47:1179–1188

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Ricci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Idili, A., Ricci, F. (2018). Design and Characterization of pH-Triggered DNA Nanoswitches and Nanodevices Based on DNA Triplex Structures. In: Zuccheri, G. (eds) DNA Nanotechnology. Methods in Molecular Biology, vol 1811. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8582-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8582-1_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8581-4

  • Online ISBN: 978-1-4939-8582-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics