Skip to main content

LSPR Detection of Nucleic Acids on Nanoparticle Monolayers

  • Protocol
  • First Online:
DNA Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1811))

Abstract

Noble metal nanoparticles are well known for their unique optical properties. Density oscillations of the nanoparticle conduction electrons are induced at a specific frequency by an external incident light beam. This phenomenon is known under the term localized surface plasmon resonance (LSPR). The spectral position of the resonance band is determined by shape, size, and material of the nanoparticle and influenced by changes of the local refractive index of the surrounding medium. The latter gives the opportunity to use noble metal nanoparticles as label-free bioanalytical sensors. Biomolecules can be bound directly on the nanoparticle surface, which leads to a change of the local refractive index, and a shift of the peak maximum is detected by absorbance spectroscopy. This method is used for bioanalytical diagnostics. Here, a DNA sensing protocol for real-time measurements in situ using this system will be presented. A dense layer of noble metal nanoparticles is immobilized on a glass substrate and implemented in a microfluidic chamber, where the spectroscopic measurements are conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kreibig U, Vollmer M (1995) Optical properties of metal clusters, Series in materials science, vol 25. Springer, Berlin

    Google Scholar 

  2. Schneider T, Jahr N, Jatschka J, Csaki A, Stranik O, Fritzsche W (2013) Localized surface plasmon resonance (LSPR) study of DNA hybridization at single nanoparticle transducers. J Nanopart Res 15(4):1–10. https://doi.org/10.1007/s11051-013-1531-7

    Article  CAS  Google Scholar 

  3. Jatschka J, Dathe A, Csáki A, Fritzsche W, Stranik O (2016) Propagating and localized surface plasmon resonance sensing—a critical comparison based on measurements and theory. Sens Bio-Sensing Res 7:62–70. https://doi.org/10.1016/j.sbsr.2016.01.003

    Article  Google Scholar 

  4. Dahlin AB, Tegenfeldt JO, Höök F (2006) Improving the instrumental resolution of sensors based on localized surface Plasmon resonance. Anal Chem 78(13):4416–4423. https://doi.org/10.1021/ac0601967

    Article  CAS  PubMed  Google Scholar 

  5. Zhang X, Servos MR, Liu J (2012) Instantaneous and quantitative functionalization of gold nanoparticles with thiolated DNA using a pH-assisted and surfactant-free route. J Am Chem Soc 134(17):7266–7269. https://doi.org/10.1021/ja3014055

    Article  CAS  PubMed  Google Scholar 

  6. Herne TM, Tarlov MJ (1997) Characterisation of DNA probes immobilized on gold surfaces. J Am Chem Soc 119:8916–8920

    Article  CAS  Google Scholar 

  7. Levitcky R, Herne TM, Tarlov MJ, Satija SK (1998) Using self-assembly to control the structure of DNA monolayers on gold: a neutron reflectivity study. J Am Chem Soc 120:9787–9792

    Article  Google Scholar 

  8. Dupont-Filliard A, Billon M, Livache T, Guillerez S (2004) Biotin/avidin system for the generation of fully renewable DNA sensor based on biotinylated polypyrrole film. Anal Chim Acta 515(2):271–277. https://doi.org/10.1016/j.aca.2004.03.072

    Article  CAS  Google Scholar 

  9. Fang Y, Hoh JH (1998) Surface-directed DNA condensation in the absence of soluble multivalent cations. Nucleic Acids Res 26(2):588–593

    Article  CAS  Google Scholar 

  10. Csáki A, Jahn F, Latka I, Henkel T, Malsch D, Schneider T, Schröder K, Schuster K, Schwuchow A, Spittel R, Zopf D, Fritzsche W (2010) Nanoparticle layer deposition for plasmonic tuning of microstructured optical fibers. Small 6(22):2584–2589. https://doi.org/10.1002/smll.201001071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thankfully acknowledge Jacqueline Jatschka for further measurements as well as Andrè Dathe and Ondrej Stranik for the data recording script and the setup. The funding of ExoDiagnos (EU Era-NET-AiFZIM KF2206925CR4) and TRACE (EU Era-NET-KIT 02WU1348A) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Fritzsche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Thamm, S., CsĂ ki, A., Fritzsche, W. (2018). LSPR Detection of Nucleic Acids on Nanoparticle Monolayers. In: Zuccheri, G. (eds) DNA Nanotechnology. Methods in Molecular Biology, vol 1811. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8582-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8582-1_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8581-4

  • Online ISBN: 978-1-4939-8582-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics