Skip to main content

Illicit and Counterfeit Drug Analysis by Morphologically Directed Raman Spectroscopy

Part of the Methods in Molecular Biology book series (MIMB,volume 1810)

Abstract

Morphologically directed Raman spectroscopy (MDRS) is a novel tool for the forensic analysis of illicit and counterfeit drug samples. MDRS combines Raman microspectroscopy with automated particle imaging so that physical and chemical information about the components of a mixture sample can be obtained. Results of automated particle imaging are used to determine samples for Raman analysis. The use of MDRS for these types of samples can be employed for both forensic investigations and adjudications of cases. The method provides insight about the physical and chemical composition of the sample, as well as about manufacturing and sample history. Here, MDRS was used in four different illicit and counterfeit drug analyses: (1) examination of a multicomponent drug mixture where the results could be used for comparative source attribution, (2) the detection of low (or trace) concentration particles in a drug sample, (3) the analysis of synthetic cathinone samples (i.e., bath salts), and (4) a study of counterfeit pharmaceutical products.

Key words

  • Morphologically directed Raman spectroscopy
  • Illicit drug analysis
  • Counterfeit pharmaceuticals
  • Raman spectroscopy
  • Automated particle imaging

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Martin A, Swarbrick J, Cammarata A (1983) Physical pharmacy: physical chemical principles in the pharmaceutical sciences, 3rd edn. Lea & Febiger, Philadephia, PA

    Google Scholar 

  2. Iranloye TA, Parrott EL (1978) Effects of compression force, particle size, and lubricants on dissolution rate. J Pharm Sci 67(4):535–539

    CrossRef  CAS  PubMed  Google Scholar 

  3. Dunne M, Corrigan OI, Ramtoola Z (2000) Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles. Biomaterials 21(16):1659–1668

    CrossRef  CAS  PubMed  Google Scholar 

  4. Kaerger JS, Edge S, Price R (2004) Influence of particle size and shape on flowability and compactibility of binary mixtures of Paracetamol and microcrystalline cellulose. Eur J Pharm Sci 22:173–179

    CrossRef  CAS  PubMed  Google Scholar 

  5. Vankeirsbilck T, Vercauteren A, Baeyens W, Van der Weken G (2002) Applications of Raman spectroscopy in pharmaceutical analysis. Trends Anal Chem 21(12):869–877

    CrossRef  CAS  Google Scholar 

  6. Chalmers JM, Edwards HGM, Hargreaves MD (eds) (2012) Infrared and Raman spectroscopy in forensic science. Wiley, West Sussex, UK

    Google Scholar 

  7. Malvern Instruments (2009) Inform: morphologically directed chemical identification—coupling particle characterization by morphological imaging with Raman spectroscopy. Malvern Instruments, Malvern, UK

    Google Scholar 

  8. Zona C (2006) The development of a protocol for the microscopical analysis of white powder unknowns: from the hot zone to the microscope. Microsc Microanal 12:16–17

    CrossRef  Google Scholar 

  9. Hargreaves M, Page K, Munshi T, Tomsett R, Lynch G, Edwards HGM (2008) Analysis of seized drugs using portable Raman spectroscopy in an airport environment—a proof of principle study. J Raman Spectrosc 39:873–880

    CrossRef  CAS  Google Scholar 

  10. Ferrari A, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:1–4

    Google Scholar 

  11. The Drug Quality and Security Act (H.R. 3204) (2013) Section 202 of the Food, Drug & Cosmetic Act. Pharmaceutical distribution supply chain. Public Law 113-54, 113th congress

    Google Scholar 

  12. Vardakou I, Pistos C, Spiliopoulou C (2011) Drugs for youth via internet and the example of mephedrone. Toxicol Lett 201:191–195

    CrossRef  CAS  PubMed  Google Scholar 

  13. Miotto K, Striebel J, Cho A, Wang C (2013) Clinical and pharmacological aspects of bath salt use: a review of literature and case reports. Drug Alcohol Depend 132:1–12

    CrossRef  CAS  PubMed  Google Scholar 

  14. Every-Palmer S (2011) Synthetic cannabinoid JWH-018 and psychosis: an explorative study. Drug Alcohol Depend 117:152–157

    CrossRef  CAS  PubMed  Google Scholar 

  15. Thornton S, Gerona R, Tomaszewski C (2012) Psychosis from a bath salt product containing flephedrone and MDPV with serum, urine, and product quantification. J Med Toxicol 8:310–313

    CrossRef  PubMed  PubMed Central  Google Scholar 

  16. Matousek P, Parker A (2006) Bulk Raman analysis of pharmaceutical tablets. Appl Spectrosc 60:1353–1357

    CrossRef  CAS  PubMed  Google Scholar 

  17. Leary PE (2014) Counterfeiting: a challenge to forensic science, the criminal justice system, and its impact on pharmaceutical innovation. Dissertation, CUNY Graduate Center

    Google Scholar 

  18. Malvern Instruments, Ltd (2015) Component specific particle characterization of the active components in pharmaceutical topical formulations. Malvern Instruments, Malvern, UK, pp 1–4

    Google Scholar 

  19. Drug Enforcement Administration (2015) DEA issues nationwide alert on fentanyl as threat to health and public safety. Available via US Department of Justice. https://www.dea.gov/divisions/hq/2015/hq031815.shtml. Accessed 01 Oct 2016

  20. Muenter M, Sharpless N, Tyce G, Darley F (1977) Patterns of dystonia (“I-D-I” and “D-I-D”) in response to l-dopa therapy for Parkinson’s disease. Mayo Clin Proc 52:163–174

    PubMed  CAS  Google Scholar 

  21. Angrist B, Gershon S (1976) Clinical effects of ampetamine and L-DOPA on sexuality and aggression. Compr Psychiatry 17:715–722

    CrossRef  CAS  PubMed  Google Scholar 

  22. Coppola M, Mondola R (2012) Synthetic cathinones: chemistry, pharmacology and toxicology of a new class of designer drugs of abuse markted as “bath salts” or “plant food”. Toxicol Lett 211:144–149

    CrossRef  CAS  PubMed  Google Scholar 

  23. Dean B, Stellpflug S, Burnett A, Engebretsen K (2013) 2C or not 2C: phenethylamine designer drug review. J Med Toxicol 9:172–178

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lociciro P, Esseiva P, Hayoz P, Dujourdy L, Besacier F, Margot P (2007) Cocaine profiling for strategic intelligence purposes, a cross border project between France and Switzerland: part 1. Optimisation and harmonisation of the profiling methods. Forensic Sci Int 167:220–228

    CrossRef  CAS  PubMed  Google Scholar 

  25. Theerakulpisut P, Gunnula W (2012) Exogenous soribitol and trehalose mitagated salt stress damage in salt-sensitive but not salt-tolerant rice seedlings. Asian J Crop Sci 4:165–170

    CrossRef  Google Scholar 

  26. Lowenthal W (1972) Disintegration of tablets. J Pharm Sci 61:1695–1711

    CrossRef  CAS  PubMed  Google Scholar 

  27. Jarosz PJ, Parrot EL (1984) Effect of lubricants on tensile strengths of tablets. Drug Dev Ind Pharm 10:259–273

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brooke W. Kammrath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Koutrakos, A.C., Leary, P.E., Kammrath, B.W. (2018). Illicit and Counterfeit Drug Analysis by Morphologically Directed Raman Spectroscopy. In: Musah, R. (eds) Analysis of Drugs of Abuse. Methods in Molecular Biology, vol 1810. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8579-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8579-1_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8578-4

  • Online ISBN: 978-1-4939-8579-1

  • eBook Packages: Springer Protocols