Skip to main content

Proximity Biotinylation for Studying G Protein-Coupled Receptor Dimerization

  • Protocol
  • First Online:
Receptor-Receptor Interactions in the Central Nervous System

Part of the book series: Neuromethods ((NM,volume 140))

  • 717 Accesses

Abstract

The importance of G protein-coupled receptor (GPCR) receptor–receptor interactions in regulating cell signaling is well documented. However, traditional methods to study these interactions are difficult to multiplex and often require extensive technical expertise and equipment. In this chapter, we will describe the major biochemical and fluorescence microscopy methods to study GPCR–GPCR interactions and introduce an alternative technique that utilizes proximity biotinylation to study these interactions. The goal of this chapter is to provide researchers with a comprehensive protocol to implement this new approach to study GPCR dimerization. Finally, we will compare and contrast the advantages and limitations of the proximity biotinylation assay with established methods to help researchers identify the best approach for their research application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nash B, Meucci O (2014) Functions of the chemokine receptor CXCR4 in the central nervous system and its regulation by μ-opioid receptors. Int Rev Neurobiol 118:105–128

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fuxe K et al (1983) Evidence for the existence of receptor–receptor interactions in the central nervous system. Studies on the regulation of monoamine receptors by neuropeptides. J Neural Transm Suppl 18:165–179

    CAS  PubMed  Google Scholar 

  3. Hebert TE et al (1996) A peptide derived from a beta2-adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation. J Biol Chem 271(27):16384–16392

    Article  CAS  PubMed  Google Scholar 

  4. Lin H, Liu AP, Smith TH, Trejo J (2013) Cofactoring and dimerization of proteinase-activated receptors. Pharmacol Rev 65(4):1198–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Romano C, Yang WL, O’Malley KL (1996) Metabotropic glutamate receptor 5 is a disulfide-linked dimer. J Biol Chem 271(45):28612–28616

    Article  CAS  PubMed  Google Scholar 

  6. Smith TH, Li JG, Dores MR, Trejo J (2017) Protease-activated receptor-4 and P2Y12 dimerize, co-internalize and activate Akt signaling via endosomal recruitment of β-arrestin. J Biol Chem. https://doi.org/10.1074/jbc.M117.782359

  7. Terrillon S, Bouvier M (2004) Roles of G-protein-coupled receptor dimerization. EMBO Rep 5(1):30–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Portoghese PS (2001) From models to molecules: opioid receptor dimers, bivalent ligands, and selective opioid receptor probes. J Med Chem 44(14):2259–2269

    Article  CAS  PubMed  Google Scholar 

  9. Fuxe K, Borroto-Escuela DO (2016) Heteroreceptor complexes and their allosteric receptor–receptor interactions as a novel biological principle for integration of communication in the CNS: targets for drug development. Neuropsychopharmacology 41(1):380–382

    Article  CAS  PubMed  Google Scholar 

  10. Soriano A et al (2009) Adenosine A2A receptor-antagonist/dopamine D2 receptor-agonist bivalent ligands as pharmacological tools to detect A2A-D2 receptor heteromers. J Med Chem 52(18):5590–5602

    Article  CAS  PubMed  Google Scholar 

  11. Cornea A, Janovick JA, Maya-Núñez G, Conn PM (2001) Gonadotropin-releasing hormone receptor microaggregation rate monitored by fluorescence resonance energy transfer. J Biol Chem 276(3):2153–2158

    Article  CAS  PubMed  Google Scholar 

  12. White JH et al (1998) Heterodimerization is required for the formation of a functional GABA(B) receptor. Nature 396(6712):679–682

    Article  CAS  PubMed  Google Scholar 

  13. Ginés S et al (2000) Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. Proc Natl Acad Sci U S A 97(15):8606–8611

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lee SP, O’Dowd BF, Rajaram RD, Nguyen T, George SR (2003) D2 dopamine receptor homodimerization is mediated by multiple sites of interaction, including an intermolecular interaction involving transmembrane domain 4. Biochemistry (Mosc) 42(37):11023–11031

    Article  CAS  Google Scholar 

  15. Fuxe K, Guidolin D, Agnati LF, Borroto-Escuela DO (2015) Dopamine heteroreceptor complexes as therapeutic targets in Parkinson’s disease. Expert Opin Ther Targets 19(3):377–398

    Article  CAS  PubMed  Google Scholar 

  16. Steel E, Murray VL, Liu AP (2014) Multiplex detection of homo- and heterodimerization of g protein-coupled receptors by proximity biotinylation. PLoS One 9(4):e93646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fuxe K, Marcellino D, Guidolin D, Woods AS, Agnati LF (2008) Heterodimers and receptor mosaics of different types of G-protein-coupled receptors. Physiology (Bethesda MD) 23:322–332

    CAS  Google Scholar 

  18. Fuxe K, Marcellino D, Guidolin D, Woods AS, Agnati L (2009) Brain receptor mosaics and their intramembrane receptor-receptor interactions: molecular integration in transmission and novel targets for drug development. J Acupunct Meridian Stud 2(1):1–25

    Article  PubMed  Google Scholar 

  19. Busillo JM, Benovic JL (2007) Regulation of CXCR4 signaling. Biochim Biophys Acta 1768(4):952–963

    Article  CAS  PubMed  Google Scholar 

  20. Bajetto A et al (1999) Glial and neuronal cells express functional chemokine receptor CXCR4 and its natural ligand stromal cell-derived factor 1. J Neurochem 73(6):2348–2357

    Article  CAS  PubMed  Google Scholar 

  21. Lipfert J, Ödemis V, Wagner D-C, Boltze J, Engele J (2013) CXCR4 and CXCR7 form a functional receptor unit for SDF-1/CXCL12 in primary rodent microglia. Neuropathol Appl Neurobiol 39(6):667–680

    Article  CAS  PubMed  Google Scholar 

  22. Maysami S et al (2006) Modulation of rat oligodendrocyte precursor cells by the chemokine CXCL12. Neuroreport 17(11):1187–1190

    Article  CAS  PubMed  Google Scholar 

  23. Meucci O, Fatatis A, Simen AA, Bushell TJ, Gray PW, Miller RJ (1998) Chemokines regulate hippocampal neuronal signaling and gp120 neurotoxicity. Proc Natl Acad Sci U S A 95(24):14500–14505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. van der Meer P, Ulrich AM, Gonźalez-Scarano F, Lavi E (2000) Immunohistochemical analysis of CCR2, CCR3, CCR5, and CXCR4 in the human brain: potential mechanisms for HIV dementia. Exp Mol Pathol 69(3):192–201

    Article  CAS  PubMed  Google Scholar 

  25. Pello OM et al (2008) Ligand stabilization of CXCR4/delta-opioid receptor heterodimers reveals a mechanism for immune response regulation. Eur J Immunol 38(2):537–549

    Article  CAS  PubMed  Google Scholar 

  26. Sun Y, Rombola C, Jyothikumar V, Periasamy A (2013) Förster resonance energy transfer microscopy and spectroscopy for localizing protein-protein interactions in living cells. Cytometry A 83(9):780–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu Y, Piston DW, Johnson CH (1999) A bioluminescence resonance energy transfer (BRET) system: Application to interacting circadian clock proteins. Proc Natl Acad Sci U S A 96(1):151–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Carriba P et al (2008) Detection of heteromerization of more than two proteins by sequential BRET-FRET. Nat Methods 5(8):727–733

    Article  CAS  PubMed  Google Scholar 

  29. Gandia J et al (2008) Detection of higher-order G protein-coupled receptor oligomers by a combined BRET-BiFC technique. FEBS Lett 582(20):2979–2984

    Article  CAS  PubMed  Google Scholar 

  30. Liu AP, Aguet F, Danuser G, Schmid SL (2010) Local clustering of transferrin receptors promotes clathrin-coated pit initiation. J Cell Biol 191(7):1381–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. De Munter S et al (2017) Split-BioID: a proximity biotinylation assay for dimerization-dependent protein interactions. FEBS Lett 591(2):415–424

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allen P. Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

DeNies, M.S., Rosselli-Murai, L.K., Murray, V.L., Steel, E.M., Liu, A.P. (2018). Proximity Biotinylation for Studying G Protein-Coupled Receptor Dimerization. In: FUXE, K., Borroto-Escuela, D. (eds) Receptor-Receptor Interactions in the Central Nervous System. Neuromethods, vol 140. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8576-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8576-0_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8575-3

  • Online ISBN: 978-1-4939-8576-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics