Skip to main content

Bimolecular Fluorescence Complementation Methodology to Study G Protein-Coupled Receptor Dimerization in Living Cells

  • Protocol
  • First Online:
Receptor-Receptor Interactions in the Central Nervous System

Part of the book series: Neuromethods ((NM,volume 140))

Abstract

Proteins, such as G protein-coupled receptors (GPCRs), can interact with each other to form dimeric or higher order oligomeric complexes with novel pharmacological properties. GPCRs play a crucial role in numerous physiological processes and diseases, and much research has been performed to prove the existence of GPCR heterodimerization and to investigate the physiological role of the heterodimers. GPCRs are targeted by roughly 25% of all FDA-approved drugs, but heterodimers may represent an untapped additional source of novel drug targets. However, study of GPCR heteromers is not trivial, with most methods having distinct strengths and weaknesses. One method to study GPCR dimerization in living cells is through bimolecular fluorescence complementation (BiFC). The BiFC technique is based on the complementation of two nonfluorescent fragments of a fluorescent protein that is facilitated by fusing the fragments to two interacting proteins. The advantage of BiFC over alternative resonance energy transfer techniques is a high signal-to-noise ratio due to its strong intrinsic fluorescence without exogenous fluorogenic or chromogenic agents required. Here we provide a detailed description of protocols to measure dimerization-induced BiFC in a low-throughput, high-resolution approach using confocal microscopy and in a medium-throughput, low-resolution approach using an automated cell imaging multimode plate reader (Biotek Cytation 3). In this chapter, we use mu and delta opioid receptor heterodimerization to provide a step-by-step BiFC protocol; however, the protocol can be adapted for use with other receptors as well as other confocal or automated microscopes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maggio R, Novi F, Scarselli M, Corsini GU (2005) The impact of G-protein-coupled receptor hetero-oligomerization on function and pharmacology. FEBS J 272(12):2939–2946

    Article  CAS  PubMed  Google Scholar 

  2. Fuxe K, Canals M, Torvinen M, Marcellino D, Terasmaa A, Genedani S, Leo G, Guidolin D, Diaz-Cabiale Z, Rivera A, Lundstrom L, Langel U, Narvaez J, Tanganelli S, Lluis C, Ferre S, Woods A, Franco R, Agnati LF (2007) Intramembrane receptor-receptor interactions: a novel principle in molecular medicine. J Neural Transm (Vienna) 114(1):49–75

    Article  CAS  Google Scholar 

  3. Gomes I, Ayoub MA, Fujita W, Jaeger WC, Pfleger KD, Devi LA (2016) G protein-coupled receptor Heteromers. Annu Rev Pharmacol Toxicol 56:403–425. https://doi.org/10.1146/annurev-pharmtox-011613-135952

    Article  PubMed  CAS  Google Scholar 

  4. Pin JP, Neubig R, Bouvier M, Devi L, Filizola M, Javitch JA, Lohse MJ, Milligan G, Palczewski K, Parmentier M, Spedding M (2007) International Union of Basic and Clinical Pharmacology. LXVII. Recommendations for the recognition and nomenclature of G protein-coupled receptor heteromultimers. Pharmacol Rev 59(1):5–13. https://doi.org/10.1124/pr.59.1.5

    Article  PubMed  CAS  Google Scholar 

  5. Vidi PA, Ejendal KF, Przybyla JA, Watts VJ (2011) Fluorescent protein complementation assays: new tools to study G protein-coupled receptor oligomerization and GPCR-mediated signaling. Mol Cell Endocrinol 331(2):185–193. https://doi.org/10.1016/j.mce.2010.07.011

    Article  PubMed  CAS  Google Scholar 

  6. Truong K, Ikura M (2001) The use of FRET imaging microscopy to detect protein-protein interactions and protein conformational changes in vivo. Curr Opin Struct Biol 11(5):573–578

    Article  CAS  PubMed  Google Scholar 

  7. Pfleger KD, Eidne KA (2006) Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET). Nat Methods 3(3):165–174

    Article  CAS  PubMed  Google Scholar 

  8. Koch S, Helbing I, Bohmer SA, Hayashi M, Claesson-Welsh L, Soderberg O, Bohmer FD (2016) In situ proximity ligation assay (in situ PLA) to assess PTP-protein interactions. Methods Mol Biol 1447:217–242. https://doi.org/10.1007/978-1-4939-3746-2_13

    Article  PubMed  CAS  Google Scholar 

  9. Hu CD, Chinenov Y, Kerppola TK (2002) Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell 9(4):789–798

    Article  CAS  PubMed  Google Scholar 

  10. Kodama Y, Hu CD (2012) Bimolecular fluorescence complementation (BiFC): a 5-year update and future perspectives. BioTechniques 53(5):285–298

    Article  CAS  PubMed  Google Scholar 

  11. Shyu YJ, Hu CD (2008) Fluorescence complementation: an emerging tool for biological research. Trends Biotechnol 26(11):622–630. https://doi.org/10.1016/j.tibtech.2008.07.006

    Article  PubMed  CAS  Google Scholar 

  12. Walter M, Chaban C, Schutze K, Batistic O, Weckermann K, Nake C, Blazevic D, Grefen C, Schumacher K, Oecking C, Harter K, Kudla J (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40(3):428–438. https://doi.org/10.1111/j.1365-313X.2004.02219.x

    Article  PubMed  CAS  Google Scholar 

  13. Sung MK, Huh WK (2007) Bimolecular fluorescence complementation analysis system for in vivo detection of protein-protein interaction in Saccharomyces cerevisiae. Yeast 24(9):767–775

    Article  CAS  PubMed  Google Scholar 

  14. Kerppola TK (2008) Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annu Rev Biophys 37:465–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shyu YJ, Suarez CD, Hu CD (2008) Visualization of ternary complexes in living cells by using a BiFC-based FRET assay. Nat Protoc 3(11):1693–1702

    Article  CAS  PubMed  Google Scholar 

  16. Duffraisse M, Hudry B, Merabet S (2014) Bimolecular fluorescence complementation (BiFC) in live drosophila embryos. Methods Mol Biol 1196:307–318. https://doi.org/10.1007/978-1-4939-1242-1_19

    Article  PubMed  CAS  Google Scholar 

  17. Shyu YJ, Liu H, Deng X, Hu CD (2006) Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions. BioTechniques 40(1):61–66

    Article  CAS  PubMed  Google Scholar 

  18. Kodama Y, Hu CD (2010) An improved bimolecular fluorescence complementation assay with a high signal-to-noise ratio. BioTechniques 49(5):793–805

    Article  CAS  PubMed  Google Scholar 

  19. Miller KE, Kim Y, Huh WK, Park HO (2015) Bimolecular fluorescence complementation (BiFC) analysis: advances and recent applications for genome-wide interaction studies. J Mol Biol 427(11):2039–2055. https://doi.org/10.1016/j.jmb.2015.03.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Ciruela F, Vilardaga JP, Fernandez-Duenas V (2010) Lighting up multiprotein complexes: lessons from GPCR oligomerization. Trends Biotechnol 28(8):407–415. https://doi.org/10.1016/j.tibtech.2010.05.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Vidi PA, Chen J, Irudayaraj JM, Watts VJ (2008) Adenosine a(2A) receptors assemble into higher-order oligomers at the plasma membrane. FEBS Lett 582(29):3985–3990. https://doi.org/10.1016/j.febslet.2008.09.062

    Article  PubMed  CAS  Google Scholar 

  22. Vidi PA, Chemel BR, Hu CD, Watts VJ (2008) Ligand-dependent oligomerization of dopamine D(2) and adenosine a(2A) receptors in living neuronal cells. Mol Pharmacol 74(3):544–551. https://doi.org/10.1124/mol.108.047472

    Article  PubMed  CAS  Google Scholar 

  23. Kodama Y, Hu CD (2013) Bimolecular fluorescence complementation (BiFC) analysis of protein-protein interaction. how to calculate signal-to-noise ratio Methods Cell Biol 113:107–121. https://doi.org/10.1016/B978-0-12-407239-8.00006-9

    Article  PubMed  CAS  Google Scholar 

  24. Yost EA, Mervine SM, Sabo JL, Hynes TR, Berlot CH (2007) Live cell analysis of G protein beta5 complex formation, function, and targeting. Mol Pharmacol 72(4):812–825. https://doi.org/10.1124/mol.107.038075

    Article  PubMed  CAS  Google Scholar 

  25. Gomes I, Gupta A, Filipovska J, Szeto HH, Pintar JE, Devi LA (2004) A role for heterodimerization of mu and delta opiate receptors in enhancing morphine analgesia. Proc Natl Acad Sci U S A 101(14):5135–5139. https://doi.org/10.1073/pnas.0307601101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Milan-Lobo L, Enquist J, van Rijn RM, Whistler JL (2013) Anti-analgesic effect of the mu/delta opioid receptor heteromer revealed by ligand-biased antagonism. PLoS One 8(3):e58362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. O’Dowd BF, Ji X, O’Dowd PB, Nguyen T, George SR (2012) Disruption of the mu-delta opioid receptor heteromer. Biochem Biophys Res Commun 422(4):556–560

    Article  CAS  PubMed  Google Scholar 

  28. He SQ, Zhang ZN, Guan JS, Liu HR, Zhao B, Wang HB, Li Q, Yang H, Luo J, Li ZY, Wang Q, Lu YJ, Bao L, Zhang X (2011) Facilitation of mu-opioid receptor activity by preventing delta-opioid receptor-mediated codegradation. Neuron 69(1):120–131

    Article  CAS  PubMed  Google Scholar 

  29. Vidi PA, Przybyla JA, Hu CD, Watts VJ (2010) Visualization of G protein-coupled receptor (GPCR) interactions in living cells using bimolecular fluorescence complementation (BiFC). Current protocols in neuroscience Chapter 5:Unit 5 29

    Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the National Institute on Mental Health (R33MH101673) to Dr. Watts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. van Rijn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Alongkronrusmee, D., Watts, V.J., van Rijn, R.M. (2018). Bimolecular Fluorescence Complementation Methodology to Study G Protein-Coupled Receptor Dimerization in Living Cells. In: FUXE, K., Borroto-Escuela, D. (eds) Receptor-Receptor Interactions in the Central Nervous System. Neuromethods, vol 140. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8576-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8576-0_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8575-3

  • Online ISBN: 978-1-4939-8576-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics