Skip to main content

Four Color ImmunoSpot® Assays for Identification of Effector T-Cell Lineages

  • Protocol
  • First Online:
Handbook of ELISPOT

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1808))

Abstract

Single color IFN-γ ELISPOT assays have evolved as a highly sensitive T cell immune monitoring platform. By detecting individual T cells that secrete IFN-γ in response to antigen exposure, these assays permit the measurement of the frequency of antigen-specific T cells among white blood cells. These assays therefore are well suited to assess clonal expansions, that is, whether a (Th1) T cell response has been induced to an antigen in a test subject. Single color IFN-γ ELISPOT assays are not suited, however, to provide information on the Th2/Th17 quality of the T cell response, nor do they provide insights into the differentiation state of CD8 cells. Recently it has been established that co-expression profiles of IL-2, TNF-α, and granzyme B along with IFN-γ permit to identify CD8 cell subpopulations. Naïve CD8 cells, central CD8 memory cells, CD8 terminal effector cells, polyfunctional CD8 cells, stem-cell like CD8 memory cells, dysfunctional- and senescent CD8 cells all differ in the extent they produce these molecules upon antigen re-encounter. We therefore have developed, and introduce here, a four color T cell ELISPOT assay in which the co-expression levels of IFN-γ, IL-2, TNF-α, and granzyme B can be established for individual antigen-specific CD8 cells, thereby identifying the activation/differentiation state of these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steinman L (2007) A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med 13(2):139–145. https://doi.org/10.1038/nm1551

    Article  PubMed  CAS  Google Scholar 

  2. Tigno-Aranjuez JT, Lehmann PV, Tary-Lehmann M (2009) Dissociated induction of cytotoxicity and DTH by CFA and CpG. J Immunother 32(4):389–398. https://doi.org/10.1097/CJI.0b013e31819d79a7

    Article  PubMed  CAS  Google Scholar 

  3. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441(7090):235–238. https://doi.org/10.1038/nature04753

    Article  PubMed  CAS  Google Scholar 

  4. Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O’Garra A, Murphy KM (1993) Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260(5107):547–549

    Article  CAS  PubMed  Google Scholar 

  5. Macatonia SE, Hosken NA, Litton M, Vieira P, Hsieh CS, Culpepper JA, Wysocka M, Trinchieri G, Murphy KM, O’Garra A (1995) Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells. J Immunol 154(10):5071–5079

    CAS  PubMed  Google Scholar 

  6. Seki N, Miyazaki M, Suzuki W, Hayashi K, Arima K, Myburgh E, Izuhara K, Brombacher F, Kubo M (2004) IL-4-induced GATA-3 expression is a time-restricted instruction switch for Th2 cell differentiation. J Immunol 172(10):6158–6166

    Article  CAS  PubMed  Google Scholar 

  7. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH (2000) A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100(6):655–669

    Article  CAS  PubMed  Google Scholar 

  8. Karulin AY, Hesse MD, Tary-Lehmann M, Lehmann PV (2000) Single-cytokine-producing CD4 memory cells predominate in type 1 and type 2 immunity. J Immunol 164(4):1862–1872

    Article  CAS  PubMed  Google Scholar 

  9. Kuerten S, Rottlaender A, Rodi M, Velasco VB Jr, Schroeter M, Kaiser C, Addicks K, Tary-Lehmann M, Lehmann PV (2010) The clinical course of EAE is reflected by the dynamics of the neuroantigen-specific T cell compartment in the blood. Clin Immunol 137(3):422–432. https://doi.org/10.1016/j.clim.2010.09.004

    Article  PubMed  CAS  Google Scholar 

  10. Wunsch M, Zhang W, Hanson J, Caspell R, Karulin AY, Recks MS, Kuerten S, Sundararaman S, Lehmann PV (2015) Characterization of the HCMV-specific CD4 T cell responses that are associated with protective immunity. Viruses 7(8):4414–4437. https://doi.org/10.3390/v7082828

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Duechting A, Przybyla A, Kuerten S, Lehmann PV (2017) Delayed activation kinetics of Th2 and Th17 vs. Th1 cells. Cells. https://doi.org/10.3390/cells6030029

  12. Kaech SM, Wherry EJ, Ahmed R (2002) Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol 2(4):251–262. https://doi.org/10.1038/nri778

    Article  PubMed  CAS  Google Scholar 

  13. Wherry EJ, Teichgraber V, Becker TC, Masopust D, Kaech SM, Antia R, von Andrian UH, Ahmed R (2003) Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat Immunol 4(3):225–234. https://doi.org/10.1038/ni889

    Article  PubMed  CAS  Google Scholar 

  14. Apetoh L, Smyth MJ, Drake CG, Abastado JP, Apte RN, Ayyoub M, Blay JY, Bonneville M, Butterfield LH, Caignard A, Castelli C, Cavallo F, Celis E, Chen L, Colombo MP, Comin-Anduix B, Coukos G, Dhodapkar MV, Dranoff G, Frazer IH, Fridman WH, Gabrilovich DI, Gilboa E, Gnjatic S, Jager D, Kalinski P, Kaufman HL, Kiessling R, Kirkwood J, Knuth A, Liblau R, Lotze MT, Lugli E, Marincola F, Melero I, Melief CJ, Mempel TR, Mittendorf EA, Odun K, Overwijk WW, Palucka AK, Parmiani G, Ribas A, Romero P, Schreiber RD, Schuler G, Srivastava PK, Tartour E, Valmori D, van der Burg SH, van der Bruggen P, van den Eynde BJ, Wang E, Zou W, Whiteside TL, Speiser DE, Pardoll DM, Restifo NP, Anderson AC (2015) Consensus nomenclature for CD8+ T cell phenotypes in cancer. Oncoimmunology 4(4):e998538. https://doi.org/10.1080/2162402X.2014.998538

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Schlingmann TR, Shive CL, Targoni OS, Tary-Lehmann M, Lehmann PV (2009) Increased per cell IFN-gamma productivity indicates recent in vivo activation of T cells. Cell Immunol 258(2):131–137. https://doi.org/10.1016/j.cellimm.2009.04.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Nowacki TM, Kuerten S, Zhang W, Shive CL, Kreher CR, Boehm BO, Lehmann PV, Tary-Lehmann M (2007) Granzyme B production distinguishes recently activated CD8(+) memory cells from resting memory cells. Cell Immunol 247(1):36–48. https://doi.org/10.1016/j.cellimm.2007.07.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Lugli E, Dominguez MH, Gattinoni L, Chattopadhyay PK, Bolton DL, Song K, Klatt NR, Brenchley JM, Vaccari M, Gostick E, Price DA, Waldmann TA, Restifo NP, Franchini G, Roederer M (2013) Superior T memory stem cell persistence supports long-lived T cell memory. J Clin Invest 123(2):594–599. https://doi.org/10.1172/JCI66327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Wherry EJ (2011) T cell exhaustion. Nat Immunol 12(6):492–499

    Article  CAS  PubMed  Google Scholar 

  19. Naugler WE, Karin M (2008) The wolf in sheep’s clothing: the role of interleukin-6 in immunity, inflammation and cancer. Trends Mol Med 14(3):109–119. https://doi.org/10.1016/j.molmed.2007.12.007

    Article  PubMed  CAS  Google Scholar 

  20. Caspell R, Lehmann PV (2018) Detecting all immunoglobulin classes and subclases in a multiplex 7 color immunospot assay. In: Kalyuzhny AE (ed) Handbook of ELISPOT, Methods in molecular biology, 3rd edn. Springer, New York pp 85–94

    Google Scholar 

  21. Karulin AY, Megyesi Z, Caspell R, Hanson J, Lehmann PV (2018) Multiplexing T- and B-Cell FLUOROSPOT Assays: Experimental Validation of the Multi-color ImmunoSpot® Software Based on Center of Mass Distance Algorithm. In: Kalyuzhny AE (ed.), Handbook of ELISPOT, Methods in Molecular Biology, 3rd ed. Springer, New York. pp 95–113

    Google Scholar 

  22. Megyesi Z, Lehmann PV, Karulin AY (2018) Multi-Color FLUOROSPOT Counting Using ImmunoSpot® Fluoro-X™ Suite. In: Kalyuzhny AE (ed) Handbook of ELISPOT, Methods in Molecular Biology, 3rd ed. Springer, New York. pp 115–131

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul V. Lehmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hanson, J., Roen, D.R., Lehmann, P.V. (2018). Four Color ImmunoSpot® Assays for Identification of Effector T-Cell Lineages. In: Kalyuzhny, A. (eds) Handbook of ELISPOT . Methods in Molecular Biology, vol 1808. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8567-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8567-8_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8566-1

  • Online ISBN: 978-1-4939-8567-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics