Skip to main content

High-Speed Optical Tweezers for the Study of Single Molecular Motors

  • Protocol
  • First Online:
Molecular Motors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1805))

Abstract

Mechanical transitions in molecular motors often occur on a submillisecond time scale and rapidly follow binding of the motor with its cytoskeletal filament. Interactions of nonprocessive molecular motors with their filament can be brief and last for few milliseconds or fraction of milliseconds. The investigation of such rapid events and their load dependence requires specialized single-molecule tools. Ultrafast force-clamp spectroscopy is a constant-force optical tweezers technique that allows probing such rapid mechanical transitions and submillisecond kinetics of biomolecular interactions, which can be particularly valuable for the study of nonprocessive motors, single heads of processive motors, or stepping dynamics of processive motors. Here we describe a step-by-step protocol for the application of ultrafast force-clamp spectroscopy to myosin motors. We give indications on optimizing the optical tweezers setup, biological constructs, and data analysis to reach a temporal resolution of few tens of microseconds combined with subnanometer spatial resolution. The protocol can be easily generalized to other families of motor proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashkin A, Dziedzik JM, Bjorkholm JE, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11(5):288–290

    Article  CAS  PubMed  Google Scholar 

  2. Capitanio M (2017) Optical tweezers. In: Lyubchenko YL (ed) An introduction to single molecule biophysics, 1st edn, CRC Press, Taylor & Francis group, Boca Raton, FL. ISBN-10: 1439806942, ISBN-13: 978-1439806944

    Google Scholar 

  3. Capitanio M, Pavone FS (2013) Interrogating biology with force: single molecule high-resolution measurements with optical tweezers. Biophys J 105(6):1293–1303. https://doi.org/10.1016/j.bpj.2013.08.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Ashkin A (1992) Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys J 61(2):569–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ren KF, Grehan G, Gouesbet G (1996) Prediction of reverse radiation pressure by generalized Lorenz-Mie theory. Appl Opt 35(15):2702–2710. https://doi.org/10.1364/Ao.35.002702

    Article  PubMed  CAS  Google Scholar 

  6. Wright WH, Sonek GJ, Berns MW (1994) Parametric study of the forces on microspheres held by optical tweezers. Appl Opt 33(9):1735–1748

    Article  CAS  PubMed  Google Scholar 

  7. Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75(9):2787–2809. https://doi.org/10.1063/1.1785844

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. HCvd H (1981) Light scattering by small particles. Dover Publications, New York, NY

    Google Scholar 

  9. Svoboda K, Schmidt CF, Schnapp BJ, Block SM (1993) Direct observation of kinesin stepping by optical trapping interferometry. Nature 365(6448):721–727

    Article  CAS  PubMed  Google Scholar 

  10. Uemura S, Higuchi H, Olivares AO, De La Cruz EM, Ishiwata S (2004) Mechanochemical coupling of two substeps in a single myosin V motor. Nat Struct Mol Biol 11(9):877–883

    Article  CAS  PubMed  Google Scholar 

  11. Finer JT, Simmons RM, Spudich JA (1994) Single myosin molecule mechanics: piconewton forces and nanometer steps. Nature 368:113–119

    Article  CAS  PubMed  Google Scholar 

  12. Molloy JE, Burns JE, Kendrick-Jones J, Tregear RT, White DCS (1995) Movement and force produced by a single myosin head. Nature 378:209–212

    Article  CAS  PubMed  Google Scholar 

  13. Capitanio M, Canepari M, Cacciafesta P, Lombardi V, Cicchi R, Maffei M, Pavone FS, Bottinelli R (2006) Two independent mechanical events in the interaction cycle of skeletal muscle myosin with actin. Proc Natl Acad Sci U S A 103(1):87–92

    Article  CAS  PubMed  Google Scholar 

  14. Howard J (2001) Mechanics of motor proteins and the cytoskeleton. Sinauer Associates, Inc., Sunderland, MA

    Google Scholar 

  15. Kojima H, Ishijima A, Yanagida T (1994) Direct measurement of stiffness of single actin filaments with and without tropomyosin by in vitro nanomanipulation. Proc Natl Acad Sci U S A 91(26):12962–12966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gittes F, Mickey B, Nettleton J, Howard J (1993) Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J Cell Biol 120(4):923–934

    Article  CAS  PubMed  Google Scholar 

  17. Capitanio M, Canepari M, Maffei M, Beneventi D, Monico C, Vanzi F, Bottinelli R, Pavone FS (2012) Ultrafast force-clamp spectroscopy of single molecules reveals load dependence of myosin working stroke. Nat Methods 9(10):1013–1019. https://doi.org/10.1038/nmeth.2152

    Article  PubMed  CAS  Google Scholar 

  18. Smith DA, Steffen W, Simmons RM, Sleep J (2001) Hidden-Markov methods for the analysis of single-molecule actomyosin displacement data: the variance-Hidden-Markov method. Biophys J 81(5):2795–2816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Knight AE, Veigel C, Chambers C, Molloy JE (2001) Analysis of single-molecule mechanical recordings: application to acto-myosin interactions. Prog Biophys Mol Biol 77(1):45–72

    Article  CAS  PubMed  Google Scholar 

  20. Walter WJ, Koonce MP, Brenner B, Steffen W (2012) Two independent switches regulate cytoplasmic dynein’s processivity and directionality. Proc Natl Acad Sci U S A 109(14):5289–5293. https://doi.org/10.1073/pnas.1116315109

    Article  PubMed  PubMed Central  Google Scholar 

  21. Veigel C, Molloy JE, Schmitz S, Kendrick-Jones J (2003) Load-dependent kinetics of force production by smooth muscle myosin measured with optical tweezers. Nat Cell Biol 5(11):980–986

    Article  CAS  PubMed  Google Scholar 

  22. Tempestini A, Monico C, Gardini L, Vanzi F, Pavone FS, Capitanio M (2018) Sliding of a single lac repressor protein along DNA is tuned by DNA sequence and molecular switching. Nucleic Acids Res 46(10):5001–5011

    Google Scholar 

  23. Rayment I, Holden HM, Whittaker M, Yohn CB, Lorenz M, Holmes KC, Milligan RA (1993) Structure of the actin-myosin complex and its implications for muscle contraction. Science 261(5117):58–65

    Article  CAS  PubMed  Google Scholar 

  24. Rayment I, Rypniewski WR, Schmidt-Base K, Smith R, Tomchick DR, Benning MM, Winkelmann DA, Wesenberg G, Holden HM (1993) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261(5117):50–58

    Article  CAS  Google Scholar 

  25. Geeves MA, Holmes KC (1999) Structural mechanism of muscle contraction. Annu Rev Biochem 68:687–728. https://doi.org/10.1146/annurev.biochem.68.1.687

    Article  PubMed  CAS  Google Scholar 

  26. Veigel C, Schmitz S, Wang F, Sellers JR (2005) Load-dependent kinetics of myosin-V can explain its high processivity. Nat Cell Biol 7(9):861–869

    Article  CAS  PubMed  Google Scholar 

  27. Purcell TJ, Morris C, Spudich JA, Sweeney HL (2002) Role of the lever arm in the processive stepping of myosin V. Proc Natl Acad Sci U S A 99(22):14159–14164. https://doi.org/10.1073/pnas.182539599

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Bryant Z, Altman D, Spudich JA (2007) The power stroke of myosin VI and the basis of reverse directionality. Proc Natl Acad Sci U S A 104(3):772–777

    Article  CAS  PubMed  Google Scholar 

  29. Veigel C, Schmidt CF (2011) Moving into the cell: single-molecule studies of molecular motors in complex environments. Nat Rev Mol Cell Biol 12(3):163–176. https://doi.org/10.1038/nrm3062

    Article  PubMed  CAS  Google Scholar 

  30. Nishikawa M, Nishikawa S, Inoue A, Iwane A, Yanagida T, Ikebe M (2006) A unique mechanism for the processive movement of single-headed myosin-IX. Biochem Biophys Res Commun 343(4):1159–1164. https://doi.org/10.1016/j.bbrc.2006.03.057

    Article  PubMed  CAS  Google Scholar 

  31. Liao W, Elfrink K, Bähler M (2010) Head of myosin IX binds calmodulin and moves processively toward the plus-end of actin filaments. J Biol Chem 285(32):24933–24942. https://doi.org/10.1074/jbc.M110.101105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Yu C, Feng W, Wei ZY, Miyanoiri Y, Wen WY, Zhao YX, Zhang MJ (2009) Myosin VI undergoes cargo-mediated dimerization. Cell 138(3):537–548

    Article  CAS  PubMed  Google Scholar 

  33. Phichith D, Travaglia M, Yang ZH, Liu XY, Zong AB, Safer D, Sweeney HL (2009) Cargo binding induces dimerization of myosin VI. Proc Natl Acad Sci U S A 106(41):17320–17324

    Article  PubMed  PubMed Central  Google Scholar 

  34. Veigel C, Wang F, Bartoo ML, Sellers JR, Molloy JE (2002) The gated gait of the processive molecular motor, myosin V. Nat Cell Biol 4(1):59–65

    Article  CAS  PubMed  Google Scholar 

  35. Monico C, Belcastro G, Vanzi F, Pavone FS, Capitanio M (2014) Combining single-molecule manipulation and imaging for the study of protein-DNA interactions. J Vis Exp 90. https://doi.org/10.3791/51446

  36. Capitanio M, Cicchi R, Pavone FS (2005) Position control and optical manipulation for nanotechnology applications. Eur Phys J B 46(1):1–8

    Article  CAS  Google Scholar 

  37. Capitanio M, Maggi D, Vanzi F, Pavone F (2007) Fiona in the trap: the advantages of combining optical tweezers and fluorescence. J Opt A Pure Appl Opt 9:S157

    Article  CAS  Google Scholar 

  38. Gardini L, Capitanio M, Pavone FS (2015) 3D tracking of single nanoparticles and quantum dots in living cells by out-of-focus imaging with diffraction pattern recognition. Sci Rep 5:16088. https://doi.org/10.1038/srep16088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Capitanio M, Normanno D, Pavone FS (2004) High-precision measurements of light-induced torque on absorbing microspheres. Opt Lett 29(19):2231–2233

    Article  PubMed  Google Scholar 

  40. Capitanio M, Cicchi R, Pavone FS (2007) Continuous and time-shared multiple optical tweezers for the study of single motor proteins. Opt Lasers Eng 45(4):450–457

    Article  Google Scholar 

  41. Woody MS, Capitanio M, Ostap EM, Goldman YE (2018) Electro-optic deflectors deliver advantages over acousto-optical deflectors in a high resolution, ultra-fast force-clamp optical trap. Optics Express 26(9):11181

    Article  PubMed  Google Scholar 

  42. Capitanio M, Romano G, Ballerini R, Giuntini M, Pavone FS, Dunlap D, Finzi L (2002) Calibration of optical tweezers with differential interference contrast signals. Rev Sci Instrum 73(4):1687–1696

    Article  CAS  Google Scholar 

  43. Colquhoun D, Sigworth FJ (1983) Single-channel recording. Plenum, New York

    Google Scholar 

  44. Vanzi F, Sacconi L, Pavone FS (2007) Analysis of kinetics in noisy systems: application to single molecule tethered particle motion. Biophys J 93(1):21–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen C, Greenberg MJ, Laakso JM, Ostap EM, Goldman YE, Shuman H (2012) Kinetic schemes for post-synchronized single molecule dynamics. Biophys J 102(6):L23–L25. https://doi.org/10.1016/j.bpj.2012.01.054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Berg-Sorensen K, Oddershede L, Florin EL, Flyvbjerg H (2003) Unintended filtering in a typical photodiode detection system for optical tweezers. J Appl Phys 93(6):3167–3176. https://doi.org/10.1063/1.1554755

    Article  CAS  Google Scholar 

  47. Batters C, Veigel C (2011) Using optical tweezers to study the fine details of myosin ATPase mechanochemical cycle. Methods Mol Biol 778:97–109. https://doi.org/10.1007/978-1-61779-261-8_7

    Article  PubMed  CAS  Google Scholar 

  48. Elangovan R, Capitanio M, Melli L, Pavone FS, Lombardi V, Piazzesi G (2012) An integrated in vitro and in situ study of kinetics of myosin II from frog skeletal muscle. J Physiol 590(Pt 5):1227–1242. https://doi.org/10.1113/jphysiol.2011.222984

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Claudia Arbore for assistance in the preparation of biological samples. The research leading to these results has received funding from the European Union Horizon 2020 Programme (H2020-INFRAIA-2014-2015 under grant agreement no. 654148—LASERLAB-EUROPE), by the Italian Ministry of University and Research (FIRB 2011 grant no. RBAP11×42L006, FIRB “Futuro in Ricerca” 2013 grant no. RBFR13V4M2, and Flagship Project NANOMAX), and by Ente Cassa di Risparmio di Firenze.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Capitanio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gardini, L., Tempestini, A., Pavone, F.S., Capitanio, M. (2018). High-Speed Optical Tweezers for the Study of Single Molecular Motors. In: Lavelle, C. (eds) Molecular Motors. Methods in Molecular Biology, vol 1805. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8556-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8556-2_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8554-8

  • Online ISBN: 978-1-4939-8556-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics