Advertisement

CD4+ T Cell Differentiation and Activation

  • Jim Reed
  • Scott A. Wetzel
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1803)

Abstract

The activation and differentiation of CD4+ T cells play a critical role in establishing and subsequently controlling protective adaptive immune responses. Flow cytometry is a powerful technique with which to assess the potential of xenobiotics to influence CD4+ T cell activation and differentiation. With flow cytometry, cells are stained with fluorochrome-conjugated antibodies and/or specific fluorescent probes to assess T cell activation, proliferation, effector cytokine production, and transcription factor expression. This technique allows for complex phenotypic analysis of tens to hundreds of thousands of individual cells very rapidly to assess the potential impact of a xenobiotic on CD4 effector differentiation and activation state.

Key words

Flow cytometry CD4+ T cells Effector differentiation T cell activation THTHTH17 THTFH Treg 

References

  1. 1.
    Mosmann TR, Coffman RL (1989) TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 7:145–173. https://doi.org/10.1146/annurev.iy.07.040189.001045 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136(7):2348–2357PubMedPubMedCentralGoogle Scholar
  3. 3.
    Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, Gurney AL (2003) Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 278(3):1910–1914. https://doi.org/10.1074/jbc.M207577200 CrossRefPubMedGoogle Scholar
  4. 4.
    Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM (2006) Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 24(6):677–688. https://doi.org/10.1016/j.immuni.2006.06.002 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, Lucian L, To W, Kwan S, Churakova T, Zurawski S, Wiekowski M, Lira SA, Gorman D, Kastelein RA, Sedgwick JD (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421(6924):744–748. https://doi.org/10.1038/nature01355 CrossRefPubMedGoogle Scholar
  6. 6.
    Dardalhon V, Awasthi A, Kwon H, Galileos G, Gao W, Sobel RA, Mitsdoerffer M, Strom TB, Elyaman W, Ho IC, Khoury S, Oukka M, Kuchroo VK (2008) IL-4 inhibits TGF-β-induced Foxp3+ T cells and, together with TGF-β, generates IL-9+ IL-10+ Foxp3 effector T cells. Nat Immunol 9(12):1347–1355. https://doi.org/10.1038/ni.1677 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Asano M, Toda M, Sakaguchi N, Sakaguchi S (1996) Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J Exp Med 184(2):387–396CrossRefPubMedGoogle Scholar
  8. 8.
    Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155(3):1151–1164PubMedGoogle Scholar
  9. 9.
    Thauland TJ, Koguchi Y, Wetzel SA, Dustin ML, Parker DC (2008) Th1 and Th2 cells form morphologically distinct immunological synapses. J Immunol 181(1):393–399CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Stritesky GL, Yeh N, Kaplan MH (2008) IL-23 promotes maintenance but not commitment to the Th17 lineage. J Immunol 181(9):5948–5955CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lu KT, Kanno Y, Cannons JL, Handon R, Bible P, Elkahloun AG, Anderson SM, Wei L, Sun H, O'Shea JJ, Schwartzberg PL (2011) Functional and epigenetic studies reveal multistep differentiation and plasticity of in vitro-generated and in vivo-derived follicular T helper cells. Immunity 35(4):622–632. https://doi.org/10.1016/j.immuni.2011.07.015 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chang HC, Sehra S, Goswami R, Yao W, Yu Q, Stritesky GL, Jabeen R, McKinley C, Ahyi AN, Han L, Nguyen ET, Robertson MJ, Perumal NB, Tepper RS, Nutt SL, Kaplan MH (2010) The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation. Nat Immunol 11(6):527–534. https://doi.org/10.1038/ni.1867 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fantini MC, Dominitzki S, Rizzo A, Neurath MF, Becker C (2007) In vitro generation of CD4+ CD25+ regulatory cells from murine naive T cells. Nat Protoc 2(7):1789–1794. https://doi.org/10.1038/nprot.2007.258 CrossRefPubMedGoogle Scholar
  14. 14.
    Herzenberg LA, Tung J, Moore WA, Herzenberg LA, Parks DR (2006) Interpreting flow cytometry data: a guide for the perplexed. Nat Immunol 7(7):681–685. https://doi.org/10.1038/ni0706-681 CrossRefPubMedGoogle Scholar
  15. 15.
    Roederer M (2001) Spectral compensation for flow cytometry: visualization artifacts, limitations, and caveats. Cytometry 45(3):194–205CrossRefPubMedGoogle Scholar
  16. 16.
    Vicetti Miguel RD, Maryak SA, Cherpes TL (2012) Brefeldin A, but not monensin, enables flow cytometric detection of interleukin-4 within peripheral T cells responding to ex vivo stimulation with Chlamydia trachomatis. J Immunol Methods 384(1–2):191–195. https://doi.org/10.1016/j.jim.2012.07.018 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Muris AH, Damoiseaux J, Smolders J, Cohen Tervaert JW, Hupperts R, Thewissen M (2012) Intracellular IL-10 detection in T cells by flowcytometry: the use of protein transport inhibitors revisited. J Immunol Methods 381(1–2):59–65. https://doi.org/10.1016/j.jim.2012.04.011 CrossRefPubMedGoogle Scholar
  18. 18.
    Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH (2000) A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100(6):655–669CrossRefPubMedGoogle Scholar
  19. 19.
    Zheng W, Flavell RA (1997) The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89(4):587–596CrossRefPubMedGoogle Scholar
  20. 20.
    Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ, Littman DR (2006) The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126(6):1121–1133. https://doi.org/10.1016/j.cell.2006.07.035 CrossRefPubMedGoogle Scholar
  21. 21.
    Yu D, Rao S, Tsai LM, Lee SK, He Y, Sutcliffe EL, Srivastava M, Linterman M, Zheng L, Simpson N, Ellyard JI, Parish IA, Ma CS, Li QJ, Parish CR, Mackay CR, Vinuesa CG (2009) The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 31(3):457–468. https://doi.org/10.1016/j.immuni.2009.07.002 CrossRefPubMedGoogle Scholar
  22. 22.
    Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY (2005) Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22(3):329–341CrossRefPubMedGoogle Scholar
  23. 23.
    Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299(5609):1057–1061CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Biological SciencesUniversity of MontanaMissoulaUSA
  2. 2.Division of Biological Sciences, Center for Environmental Health SciencesUniversity of MontanaMissoulaUSA

Personalised recommendations