Skip to main content

Functional Assays of Hematopoietic Stem Cells in Toxicology Research

  • Protocol
  • First Online:
Immunotoxicity Testing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1803))

Abstract

The hematopoietic stem cell is the foundational cell of the entire blood and immune system and as such is particularly sensitive to toxicological insults. While this review will identify some of the classes of chemicals known to be hematotoxic, most of the discussion will focus on the strengths and weaknesses of various hematological assays used in toxicology research. Furthermore, protocols for isolating both human and murine hematopoietic stem cells are described. Methodologies are also described for various culture systems useful for testing the impacts of potential toxicants on hematopoietic stem cells both in vivo and in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Celso Lo C, Fleming HE, Wu JW et al (2008) Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 457:92–97. https://doi.org/10.1038/nature07434

    Article  CAS  Google Scholar 

  2. Gasiewicz TA, Singh KP, Casado FL (2010) The aryl hydrocarbon receptor has an important role in the regulation of hematopoiesis: implications for benzene-induced hematopoietic toxicity. Chem Biol Interact 184:246–251. https://doi.org/10.1016/j.cbi.2009.10.019

    Article  PubMed  CAS  Google Scholar 

  3. Badham HJ, Winn LM (2010) In utero exposure to benzene disrupts fetal hematopoietic progenitor cell growth via reactive oxygen species. Toxicol Sci 113:207–215. https://doi.org/10.1093/toxsci/kfp242

    Article  PubMed  CAS  Google Scholar 

  4. Badham HJ, LeBrun DP, Rutter A, Winn LM (2010) Transplacental benzene exposure increases tumor incidence in mouse offspring: possible role of fetal benzene metabolism. Carcinogenesis 31:1142–1148. https://doi.org/10.1093/carcin/bgq074

    Article  PubMed  CAS  Google Scholar 

  5. Maggio M, Snyder PJ, Ceda GP et al (2012) Is the haematopoietic effect of testosterone mediated by erythropoietin? The results of a clinical trial in older men. Andrology 1:24–28. https://doi.org/10.1111/j.2047-2927.2012.00009.x

    Article  PubMed  CAS  Google Scholar 

  6. Medina KL, Garrett KP, Thompson LF et al (2001) Identification of very early lymphoid precursors in bone marrow and their regulation by estrogen. Nat Immunol 2:718–724. https://doi.org/10.1038/90659

    Article  PubMed  CAS  Google Scholar 

  7. Merhi M, Raynal H, Cahuzac E et al (2007) Occupational exposure to pesticides and risk of hematopoietic cancers: meta-analysis of case-control studies. Cancer Causes Control 18:1209–1226. https://doi.org/10.1007/s10552-007-9061-1

    Article  PubMed  CAS  Google Scholar 

  8. Van Maele-Fabry G, Duhayon S, Mertens C, Lison D (2008) Risk of leukaemia among pesticide manufacturing workers: a review and meta-analysis of cohort studies. Environ Res 106:121–137. https://doi.org/10.1016/j.envres.2007.09.002

    Article  PubMed  CAS  Google Scholar 

  9. Mandarapu R, Prakhya BM (2015) In vitro myelotoxic effects of cypermethrin and mancozeb on human hematopoietic progenitor cells. J Immunotoxicol 12:48–55. https://doi.org/10.3109/1547691X.2014.880535

    Article  PubMed  CAS  Google Scholar 

  10. Ng SP, Zelikoff JT (2008) The effects of prenatal exposure of mice to cigarette smoke on offspring immune parameters. J Toxicol Environ Health Part A 71:445–453. https://doi.org/10.1080/15287390701839281

    Article  CAS  Google Scholar 

  11. Serobyan N, Orlovskaya I, Kozlov V, Khaldoyanidi SK (2005) Exposure to nicotine during gestation interferes with the colonization of fetal bone marrow by hematopoietic stem/progenitor cells. Stem Cells Dev 14:81–91. https://doi.org/10.1089/scd.2005.14.81

    Article  PubMed  CAS  Google Scholar 

  12. Fine JS, Gasiewicz TA, Silverstone AE (1989) Lymphocyte stem cell alterations following perinatal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Mol Pharmacol 35:18–25

    PubMed  CAS  Google Scholar 

  13. Singh KP, Wyman A, Casado FL et al (2009) Treatment of mice with the Ah receptor agonist and human carcinogen dioxin results in altered numbers and function of hematopoietic stem cells. Carcinogenesis 30:11–19. https://doi.org/10.1093/carcin/bgn224

    Article  PubMed  CAS  Google Scholar 

  14. Laiosa MD, Tate ER, Ahrenhoerster LS et al (2016) Effects of developmental activation of the aryl hydrocarbon receptor by 2,3,7,8-tetrachlorodibenzo-p-dioxin on long-term self-renewal of murine hematopoietic stem cells. Environ Health Perspect 124:957–965. https://doi.org/10.1289/ehp.1509820

    Article  PubMed  CAS  Google Scholar 

  15. Sakai R, Kajiume T, Inoue H et al (2003) TCDD treatment eliminates the long-term reconstitution activity of hematopoietic stem cells. Toxicol Sci 72:84–91. https://doi.org/10.1093/toxsci/kfg002

    Article  PubMed  CAS  Google Scholar 

  16. Boitano AE, Wang J, Romeo R et al (2010) Supplemental: aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science 329:1345–1348. https://doi.org/10.1126/science.1191536

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Singh KP, Garrett RW, Casado FL, Gasiewicz TA (2011) Aryl hydrocarbon receptor-null allele mice have hematopoietic stem/progenitor cells with abnormal characteristics and functions. Stem Cells Dev 20:769–784. https://doi.org/10.1089/scd.2010.0333

    Article  PubMed  CAS  Google Scholar 

  18. Smith BW, Rozelle SS, Leung A et al (2013) The aryl hydrocarbon receptor directs hematopoietic progenitor cell expansion and differentiation. Blood 122:376–385. https://doi.org/10.1182/blood-2012-11-466722

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Dietert RR (2011) Role of developmental immunotoxicity and immune dysfunction in chronic disease and cancer. Reprod Toxicol 31:319–326. https://doi.org/10.1016/j.reprotox.2010.09.006

    Article  PubMed  CAS  Google Scholar 

  20. Boule LA, Winans B, Lawrence BP (2014) Effects of developmental activation of the AhR on CD4+ T-cell responses to influenza virus infection in adult mice. Environ Health Perspect 122:1201–1208. https://doi.org/10.1289/ehp.1408110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Winans B, Humble MC, Lawrence BP (2011) Environmental toxicants and the developing immune system: a missing link in the global battle against infectious disease? Reprod Toxicol 31:327–336. https://doi.org/10.1016/j.reprotox.2010.09.004

    Article  PubMed  CAS  Google Scholar 

  22. Winans B, Nagari A, Chae M et al (2015) Linking the aryl hydrocarbon receptor with altered DNA methylation patterns and developmentally induced aberrant antiviral CD8+ T cell responses. J Immunol 194:4446–4457. https://doi.org/10.4049/jimmunol.1402044

    Article  PubMed  CAS  Google Scholar 

  23. Broxmeyer HE, Hangoc G, Cooper S et al (1992) Growth characteristics and expansion of human umbilical cord blood and estimation of its potential for transplantation in adults. Proc Natl Acad Sci U S A 89:4109–4113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Broxmeyer HE, Lee M-R, Hangoc G et al (2011) Hematopoietic stem/progenitor cells, generation of induced pluripotent stem cells, and isolation of endothelial progenitors from 21- to 23.5-year cryopreserved cord blood. Blood 117:4773–4777. https://doi.org/10.1182/blood-2011-01-330514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Pessina A, Albella B, Bayo M et al (2003) Application of the CFU-GM assay to predict acute drug-induced neutropenia: an international blind trial to validate a prediction model for the maximum tolerated dose (MTD) of myelosuppressive xenobiotics. Toxicol Sci 75:355–367. https://doi.org/10.1093/toxsci/kfg188

    Article  PubMed  CAS  Google Scholar 

  26. Pessina A, Bonomi A, Cavicchini L et al (2010) Prevalidation of the rat CFU-GM assay for in vitro toxicology applications. Altern Lab Anim 38:105–117

    PubMed  CAS  Google Scholar 

  27. Ezeh PC, Xu H, Wang SC et al (2016) Evaluation of toxicity in mouse bone marrow progenitor cells. Curr Protoc Toxicol 67:18.9.1–18.9.12. https://doi.org/10.1002/0471140856.tx1809s67

    Article  Google Scholar 

  28. Yadav NK, Shukla P, Omer A et al (2015) Alternative methods in toxicology: CFU assays application, limitation and future prospective. Drug Chem Toxicol 39:1–12. https://doi.org/10.3109/01480545.2014.994217

    Article  PubMed  CAS  Google Scholar 

  29. Powell K, Kwee E, Nutter B et al (2016) Variability in subjective review of umbilical cord blood colony forming unit assay. Cytometry 90:517–524. https://doi.org/10.1002/cyto.b.21376

    Article  PubMed  CAS  Google Scholar 

  30. Pamphilon D, Selogie E, McKenna D et al (2013) Current practices and prospects for standardization of the hematopoietic colony-forming unit assay: a report by the cellular therapy team of the Biomedical Excellence for Safer Transfusion (BEST) Collaborative. Cytotherapy 15:255–262. https://doi.org/10.1016/j.jcyt.2012.11.013

    Article  PubMed  PubMed Central  Google Scholar 

  31. Choudhry P (2016) High-throughput method for automated colony and cell counting by digital image analysis based on edge detection. PLoS One 11:e0148469–e0148423. https://doi.org/10.1371/journal.pone.0148469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Haglund C, leskog AÃ, kansson LDH et al (2010) The FMCA-GM assays, high throughput non-clonogenic alternatives to CFU-GM in preclinical hematotoxicity testing. Toxicol Lett 194:102–107. https://doi.org/10.1016/j.toxlet.2010.02.006

    Article  PubMed  CAS  Google Scholar 

  33. Guo L, Hamre J III, Davis M, Parchment RE (2016) Human CD34+ progenitor hematopoiesis in liquid culture for in vitro assessment of drug-induced myelotoxicity. Toxicol In Vitro 31:103–113. https://doi.org/10.1016/j.tiv.2015.11.017

    Article  PubMed  CAS  Google Scholar 

  34. Radtke F, Wilson A, Stark G et al (1999) Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10:547–558

    Article  CAS  PubMed  Google Scholar 

  35. MacDonald HR, Wilson A, Radtke F (2001) Notch1 and T-cell development: insights from conditional knockout mice. Trends Immunol 22:155–160

    Article  CAS  PubMed  Google Scholar 

  36. Schmitt TM, Zúñiga-Pflücker JC (2002) Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity 17:749–756

    Article  CAS  PubMed  Google Scholar 

  37. Awong G, Herer E, Surh CD et al (2009) Characterization in vitro and engraftment potential in vivo of human progenitor T cells generated from hematopoietic stem cells. Blood 114:972–982. https://doi.org/10.1182/blood-2008-10-187013

    Article  PubMed  CAS  Google Scholar 

  38. Zhao Y, Parkhurst MR, Zheng Z et al (2007) Extrathymic generation of tumor-specific T cells from genetically engineered human hematopoietic stem cells via Notch signaling. Cancer Res 67:2425–2429. https://doi.org/10.1158/0008-5472.CAN-06-3977

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Ahrenhoerster LS, Tate ER, Lakatos PA et al (2014) Developmental exposure to 2,3,7,8 tetrachlorodibenzo-p-dioxin attenuates capacity of hematopoietic stem cells to undergo lymphocyte differentiation. Toxicol Appl Pharmacol 277:172–182. https://doi.org/10.1016/j.taap.2014.03.020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. van Os RP, Dethmers-Ausema B, de Haan G (2008) In vitro assays for cobblestone area-forming cells, LTC-IC, and CFU-C. Methods Mol Biol 430:143–157

    Article  PubMed  Google Scholar 

  41. Mazini L, Wunder E, Sovalat H et al (1998) Mature accessory cells influence long-term growth of human hematopoietic progenitors on a murine stromal cell feeder layer. Stem Cells 16:404–412. https://doi.org/10.1002/stem.160404

    Article  PubMed  CAS  Google Scholar 

  42. Moore KA, Ema H, Lemischka IR (1997) In vitro maintenance of highly purified, transplantable hematopoietic stem cells. Blood 89:4337–4347

    PubMed  CAS  Google Scholar 

  43. Richie Ehrlich LI, Serwold T, Weissman IL (2011) In vitro assays misrepresent in vivo lineage potentials of murine lymphoid progenitors. Blood 117:2618–2624. https://doi.org/10.1182/blood-2010-05-287102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Hogan CJ, Shpall EJ, McNulty O et al (1997) Engraftment and development of human CD34(+)-enriched cells from umbilical cord blood in NOD/LtSz-scid/scid mice. Blood 90:85–96

    PubMed  CAS  Google Scholar 

  45. Wang JC, Doedens M, Dick JE (1997) Primitive human hematopoietic cells are enriched in cord blood compared with adult bone marrow or mobilized peripheral blood as measured by the quantitative in vivo SCID-repopulating cell assay. Blood 89:3919–3924

    PubMed  CAS  Google Scholar 

  46. Boitano AE, Wang J, Romeo R, et al (2010) Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science 329:1345–1348. https://doi.org/10.1126/science.1191536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hogaboam JP, Moore AJ, Lawrence BP (2008) The aryl hydrocarbon receptor affects distinct tissue compartments during ontogeny of the immune system. Toxicol Sci 102:160–170. https://doi.org/10.1093/toxsci/kfm283

    Article  PubMed  CAS  Google Scholar 

  48. Hu Y, Smyth GK (2009) ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J Immunol Methods 347:70–78. https://doi.org/10.1016/j.jim.2009.06.008

    Article  PubMed  CAS  Google Scholar 

  49. CLSI (2014) Protection of laboratory workers from occupationally acquired infections: approved guideline. 4th edn. CLSI Document M29-A4. Clinical and Laboratory Standards Institute, Wayne, PA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Laiosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Laiosa, M.D. (2018). Functional Assays of Hematopoietic Stem Cells in Toxicology Research. In: DeWitt, J., Rockwell, C., Bowman, C. (eds) Immunotoxicity Testing. Methods in Molecular Biology, vol 1803. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8549-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8549-4_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8548-7

  • Online ISBN: 978-1-4939-8549-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics