Advertisement

De Novo Transcriptomic Approach to Study Thyroid Hormone Receptor Action in Non-mammalian Models

  • Nicolas Buisine
  • Gwenneg Kerdivel
  • Laurent M. Sachs
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1801)

Abstract

Thyroid hormones are pleiotropic hormones involved in chordates physiology. Understanding their functions and mechanisms is also instrumental to diagnose dys-regulations and get a predictive power that can applied to medicine, ecology, etc. Today, high-throughput sequencing technologies offer the opportunity to address this issue not only in model organisms but also in non-model organisms. Here, we describe a method that makes use of RNA-seq to address differential expression analysis in non-model organism.

Key words

Thyroid hormones Transcriptome assembly Transcriptome annotation Differential expression analysis 

Notes

Acknowledgment

This work was supported by the “Centre National de la Recherche Scientifque” (PEPS ExoMod “Triton” to L.M.S.) and the “Muséum National d’Histoire Naturelle” (Action Transversale du Muséum “Formes possibles, Formes réalisées” and Action Transversale du Muséum “Cycles biologiques” to L.M.S., and the Scientifc council post-doctoral position to G.K.). We thank J. Pedraza and the PCIA services for providing intensive computation infrastructure.

References

  1. 1.
    Laudet V (2011) The origins and evolution of vertebrate metamorphosis. Curr Biol 21(18):R726–R737CrossRefGoogle Scholar
  2. 2.
    Raymaekers SR, Darras VM (2017) Thyroid hormones and learning-associated neuroplasticity. Gene Comp Endocrinol 247:26–33CrossRefGoogle Scholar
  3. 3.
    Rovet JF (2014) The rôle of thyroid hormones for brain development and cognitive function. Endocr Dev 26:26–43CrossRefGoogle Scholar
  4. 4.
    Edeline E, Bardonnet A, Bolliet V et al (2005) Endocrine control of Anguilla anguilla glass eel dispersal: effect of thyroid hormones on locomotor activity and rheotactic behavior. Horm Behav 48(1):53–63CrossRefGoogle Scholar
  5. 5.
    Wilsterman K, Buck CL, Barnes BM, Williams CT (2015) Energy regulation in context: free-living female artic ground squirrels modulate the relatioship between thyroid hormones and activity among life history stages. Horm Behav 75:111–119CrossRefGoogle Scholar
  6. 6.
    Sharma P, Tang S, Mayer GD, Patiño R (2016) Effects of thyroid endocrine manipulation on sex-related gene expression and population sex ratios in Zebrafish. Gen Comp Endocrinol 235:38–47CrossRefGoogle Scholar
  7. 7.
    Sun BJ, Li T, Mu Y et al (2016) Thyroid hormone modulates offspring sex ratio in a turtle with temperature-dependent sex determination. Proc Biol Sci 283(1841). pii:20161206CrossRefGoogle Scholar
  8. 8.
    Nishiwaki-Ohkawa T, Yoshimura T (2016) Molecular basis for regulating seasonal reproduction in vertebrates. J Endocrinol 229(3):R117–R127CrossRefGoogle Scholar
  9. 9.
    Geven EJ, Klaren PH (2017) The teleost head kidney: integrating thyroid and immune signalling. Dev Comp Immunol 66:73–83CrossRefGoogle Scholar
  10. 10.
    da Fonseca RR, Albrechtsen A, Themudo GE et al (2016) Next-generation biology: sequencing and data analysis approaches for non-model organisms. Mar Genomics 30:3–13CrossRefGoogle Scholar
  11. 11.
    Grabherr MG, Haas BJ, Yassour M et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–652CrossRefGoogle Scholar
  12. 12.
    Haas BJ, Papanicolaou A, Yassour M et al (2013) De novo transcript sequence reconstruction from RNA-Seq: reference generation and analysis with trinity. Nat Protoc 8(8):1494–1512CrossRefGoogle Scholar
  13. 13.
    Luo R, Liu B, Xie Y et al (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1(1):18CrossRefGoogle Scholar
  14. 14.
    Birol I, Jackman SD, Nielsen CB et al (2009) De novo transcriptome assembly with ABySS. Bioinformatics 25(21):2872–2877CrossRefGoogle Scholar
  15. 15.
    Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18(5):821–829CrossRefGoogle Scholar
  16. 16.
    Schulz MH, Zerbino DR, Vingron M, Birney E (2012) Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28(8):1086–1092CrossRefGoogle Scholar
  17. 17.
    Altschul SF, Madden TL, Schaffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefGoogle Scholar
  18. 18.
    Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421CrossRefGoogle Scholar
  19. 19.
    Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25CrossRefGoogle Scholar
  20. 20.
    Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359CrossRefGoogle Scholar
  21. 21.
    Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11(10):R106CrossRefGoogle Scholar
  22. 22.
    Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550CrossRefGoogle Scholar
  23. 23.
    Quinlan AR, Hall AM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6):841–842CrossRefGoogle Scholar
  24. 24.
    Bradnam KR, Fass JN, Alexandrov A et al (2013) Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species. Gigascience 2(1):10CrossRefGoogle Scholar
  25. 25.
    Aubry S, Kelly S, Kümpers BMC et al (2016) Deep evolutionary comparison of gene expression identifies parallel recruitment of Trans-factors in two independent origins of C4 photosynthesis. PLoS Genet 12(5):e1006087CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Nicolas Buisine
    • 1
  • Gwenneg Kerdivel
    • 1
  • Laurent M. Sachs
    • 1
  1. 1.Function and Mechanism of Action of Thyroid Hormone Receptor group, UMR 7221 CNRS and Muséum National d’Histoire NaturelleSorbonne UniversitésParisFrance

Personalised recommendations