Skip to main content

Chemoinformatic Approach to Assess Toxicity of Ionic Liquids

Part of the Methods in Molecular Biology book series (MIMB,volume 1800)


Chemoinformatic methods, such as multivariable explorative techniques and quantitative structure–activity relationship (QSAR) modeling, allow for discovering relationships between the activity and the structure of chemical compounds. These techniques can be applied, as preliminary screening methods for designing and/or selecting new compounds with defined activity.

Here we describe step by step how to preliminarily screen ionic liquids (a set of 13 ILs) and assess their cytotoxic activity against leukemia cell line IPC-81 as well as ILs’ potential to inhibit acetylcholinesterase enzyme using the TRIC method (toxicity ranking index of cations) combined with the QSAR approach.

Key words

  • Ionic liquids
  • Multivariable explorative technique
  • TRIC
  • Quantitative structure–activity relationship
  • Molecular descriptors

This is a preview of subscription content, access via your institution.

Buying options

USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-7899-1_26
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-7899-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more


  1. Wasserscheid P, Welton T (2002) Ionic liquids in synthesis. Wiley-VCH, Weinheim, Germany

    CrossRef  Google Scholar 

  2. Endres F, El Abedin SZ (2006) Air and water stable ionic liquids in physical chemistry. Phys Chem Chem Phys 8(18):2101–2116

    CrossRef  CAS  PubMed  Google Scholar 

  3. Aschenbrenner O, Supasitmongkol S, Taylor M, Styring P (2009) Measurement of vapour pressures of ionic liquids and other low vapour pressure solvents. Green Chem 11(8):1217–1221

    CrossRef  Google Scholar 

  4. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99(8):2071–2084

    CrossRef  CAS  Google Scholar 

  5. Sheldon RA, Lau RM, Sorgedrager MJ, van Rantwijk F, Seddon KR (2002) Biocatalysis in ionic liquids. Green Chem 4(2):147–151

    CrossRef  CAS  Google Scholar 

  6. Tan SS, Macfarlane DR (2010) Ionic liquids in biomass processing. Top Curr Chem 290:311–339

    CrossRef  CAS  PubMed  Google Scholar 

  7. Adawiyah N, Moniruzzaman M, Hawatulailaa S, Goto M (2016) Ionic liquids as a potential tool for drug delivery systems. MedChemComm 7:1881–1897

    CrossRef  CAS  Google Scholar 

  8. Gilmore BF, Earle MJ (2011) Development of ionic liquid biocides against microbial biofilms Designer microbicides for infection control. Chim Oggi 29:50–53

    CAS  Google Scholar 

  9. Das RN, Roy K (2013) Advances in QSPR/QSTR models of ionic liquids for the design of greener solvents of the future. Mol Divers 17:151–196.

    CrossRef  PubMed  CAS  Google Scholar 

  10. Dukhande VA, Choksi TS, Sabnis SU, Patwardhan AW, Patwardhan AV (2013) Separation of toluene from n-heptane using monocationic and dicationic ionic liquids. Fluid Phase Equilib 342:75–81

    CrossRef  CAS  Google Scholar 

  11. Viboud S, Papaiconomou N, Cortesi A, Chatel G, Draye M, Fontvieille D (2012) Correlating the structure and composition of ionic liquids with their toxicity on Vibrio fischeri: a systematic study. J Hazard Mater 215:40–48

    CrossRef  CAS  PubMed  Google Scholar 

  12. Stasiewicz M, Mulkiewicz E, Tomczak-Wandzel R, Kumirska J, Siedlecka EM, Golebiowski M, Gajdus J, Czerwicka M, Stepnowski P (2008) Assessing toxicity and biodegradation of novel, environmentally benign ionic liquids (1-alkoxymethyl-3-hydroxypyridinium chloride, saccharinate and acesulfamates) on cellular and molecular level. Ecotoxicol Environ Saf 71:157–165

    CrossRef  CAS  PubMed  Google Scholar 

  13. Stock F, Hoffmann J, Ranke J, Stormann R, Ondruschka B, Jastorff B (2004) Effects of ionic liquids on the acetylcholinesterase – a structure-activity relationship consideration. Green Chem 6:286–290

    CrossRef  CAS  Google Scholar 

  14. Ranke J, Molter K, Stock F, Bottin-Weber U, Poczobutt J, Hoffmann J, Ondruschka B, Filser J, Jastorff B (2004) Biological effects of imidazolium ionic liquids with varying chain lengths in acute Vibrio fischeri and WST-1 cell viability assays. Ecotoxicol Environ Saf 58:396–404

    CrossRef  CAS  PubMed  Google Scholar 

  15. Frade RFM, Matias A, Branco LC, Afonso CAM, Duarte CMM (2007) Effect of ionic liquids on human colon carcinoma HT-29 and CaCo-2 cell lines. Green Chem 9(8):873–877

    CrossRef  CAS  Google Scholar 

  16. Latala A, Nedzi M, Stepnowski P (2010) Toxicity of imidazolium ionic liquids towards algae. Influence of salinity variations. Green Chem 12:60–64

    CrossRef  CAS  Google Scholar 

  17. Gramatica P, Pilutti P, Papa E (2004) A tool for the assessment of VOC degradability by tropospheric oxidants starting from chemical structure. Atmos Environ 38:6167–6175

    CrossRef  CAS  Google Scholar 

  18. Sosnowska A, Barycki M, Zaborowska M, Rybinska A, Puzyn T (2014) Towards designing environmentally safe ionic liquids: the influence of the cation structure. Green Chem 16:4749–4757

    CrossRef  CAS  Google Scholar 

  19. Hansch C, Fujita T (1964) Rho-sigma-pi analysis. Method for correlation of biological activity + chemical structure. J Am Chem Soc 86:1616–1626

    CrossRef  CAS  Google Scholar 

  20. Sosnowska A, Grzonkowska M, Puzyn T (2017) Global versus local QSAR models for predicting ionic liquids toxicity against IPC-81 leukemia rat cell line: the predictive ability. J Mol Liq 231:333–340

    CrossRef  CAS  Google Scholar 

  21. ACD/ChemSketch v, Advanced Chemistry Development, Inc., Toronto, ON, Canada., 2008

  22. Aao-smbavtVX, 2012

  23. Dragon Software for Molecular Descriptor Calculation hwtmi, Milano, 2014

    Google Scholar 

  24. Yap CW (2011) PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem 32:1466–1474

    CrossRef  CAS  PubMed  Google Scholar 

  25. Stewart JJP (2012) Stewart computational chemistry, Colorado Springs, CO, USA

    Google Scholar 

  26. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open babel: an open chemical toolbox. J Cheminform 3:33

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schaftenaar G, Noordik JH (2000) Molden: a pre- and post-processing program for molecular and electronic structures. J Comput Aided Mol Des 14:123–134

    CrossRef  CAS  PubMed  Google Scholar 

Download references


This material is based on research funded by the National Science Center (Poland) (Grant No. UMO-2012/05/E/NZ7/01148).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Tomasz Puzyn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Sosnowska, A., Rybinska-Fryca, A., Barycki, M., Jagiello, K., Puzyn, T. (2018). Chemoinformatic Approach to Assess Toxicity of Ionic Liquids. In: Nicolotti, O. (eds) Computational Toxicology. Methods in Molecular Biology, vol 1800. Humana Press, New York, NY.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7898-4

  • Online ISBN: 978-1-4939-7899-1

  • eBook Packages: Springer Protocols