Abstract
Chemoinformatic methods, such as multivariable explorative techniques and quantitative structure–activity relationship (QSAR) modeling, allow for discovering relationships between the activity and the structure of chemical compounds. These techniques can be applied, as preliminary screening methods for designing and/or selecting new compounds with defined activity.
Here we describe step by step how to preliminarily screen ionic liquids (a set of 13 ILs) and assess their cytotoxic activity against leukemia cell line IPC-81 as well as ILs’ potential to inhibit acetylcholinesterase enzyme using the TRIC method (toxicity ranking index of cations) combined with the QSAR approach.
Key words
- Ionic liquids
- Multivariable explorative technique
- TRIC
- Quantitative structure–activity relationship
- Molecular descriptors
This is a preview of subscription content, access via your institution.
Buying options





References
Wasserscheid P, Welton T (2002) Ionic liquids in synthesis. Wiley-VCH, Weinheim, Germany
Endres F, El Abedin SZ (2006) Air and water stable ionic liquids in physical chemistry. Phys Chem Chem Phys 8(18):2101–2116
Aschenbrenner O, Supasitmongkol S, Taylor M, Styring P (2009) Measurement of vapour pressures of ionic liquids and other low vapour pressure solvents. Green Chem 11(8):1217–1221
Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99(8):2071–2084
Sheldon RA, Lau RM, Sorgedrager MJ, van Rantwijk F, Seddon KR (2002) Biocatalysis in ionic liquids. Green Chem 4(2):147–151
Tan SS, Macfarlane DR (2010) Ionic liquids in biomass processing. Top Curr Chem 290:311–339
Adawiyah N, Moniruzzaman M, Hawatulailaa S, Goto M (2016) Ionic liquids as a potential tool for drug delivery systems. MedChemComm 7:1881–1897
Gilmore BF, Earle MJ (2011) Development of ionic liquid biocides against microbial biofilms Designer microbicides for infection control. Chim Oggi 29:50–53
Das RN, Roy K (2013) Advances in QSPR/QSTR models of ionic liquids for the design of greener solvents of the future. Mol Divers 17:151–196. https://doi.org/10.1007/s11030-012-9413-y
Dukhande VA, Choksi TS, Sabnis SU, Patwardhan AW, Patwardhan AV (2013) Separation of toluene from n-heptane using monocationic and dicationic ionic liquids. Fluid Phase Equilib 342:75–81
Viboud S, Papaiconomou N, Cortesi A, Chatel G, Draye M, Fontvieille D (2012) Correlating the structure and composition of ionic liquids with their toxicity on Vibrio fischeri: a systematic study. J Hazard Mater 215:40–48
Stasiewicz M, Mulkiewicz E, Tomczak-Wandzel R, Kumirska J, Siedlecka EM, Golebiowski M, Gajdus J, Czerwicka M, Stepnowski P (2008) Assessing toxicity and biodegradation of novel, environmentally benign ionic liquids (1-alkoxymethyl-3-hydroxypyridinium chloride, saccharinate and acesulfamates) on cellular and molecular level. Ecotoxicol Environ Saf 71:157–165
Stock F, Hoffmann J, Ranke J, Stormann R, Ondruschka B, Jastorff B (2004) Effects of ionic liquids on the acetylcholinesterase – a structure-activity relationship consideration. Green Chem 6:286–290
Ranke J, Molter K, Stock F, Bottin-Weber U, Poczobutt J, Hoffmann J, Ondruschka B, Filser J, Jastorff B (2004) Biological effects of imidazolium ionic liquids with varying chain lengths in acute Vibrio fischeri and WST-1 cell viability assays. Ecotoxicol Environ Saf 58:396–404
Frade RFM, Matias A, Branco LC, Afonso CAM, Duarte CMM (2007) Effect of ionic liquids on human colon carcinoma HT-29 and CaCo-2 cell lines. Green Chem 9(8):873–877
Latala A, Nedzi M, Stepnowski P (2010) Toxicity of imidazolium ionic liquids towards algae. Influence of salinity variations. Green Chem 12:60–64
Gramatica P, Pilutti P, Papa E (2004) A tool for the assessment of VOC degradability by tropospheric oxidants starting from chemical structure. Atmos Environ 38:6167–6175
Sosnowska A, Barycki M, Zaborowska M, Rybinska A, Puzyn T (2014) Towards designing environmentally safe ionic liquids: the influence of the cation structure. Green Chem 16:4749–4757
Hansch C, Fujita T (1964) Rho-sigma-pi analysis. Method for correlation of biological activity + chemical structure. J Am Chem Soc 86:1616–1626
Sosnowska A, Grzonkowska M, Puzyn T (2017) Global versus local QSAR models for predicting ionic liquids toxicity against IPC-81 leukemia rat cell line: the predictive ability. J Mol Liq 231:333–340
ACD/ChemSketch v, Advanced Chemistry Development, Inc., Toronto, ON, Canada. http://www.acdlabs.com, 2008
http://avogadro.cc/ Aao-smbavtVX, 2012
Dragon Software for Molecular Descriptor Calculation hwtmi, Milano, 2014
Yap CW (2011) PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem 32:1466–1474
Stewart JJP (2012) Stewart computational chemistry, Colorado Springs, CO, USA
O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open babel: an open chemical toolbox. J Cheminform 3:33
Schaftenaar G, Noordik JH (2000) Molden: a pre- and post-processing program for molecular and electronic structures. J Comput Aided Mol Des 14:123–134
Acknowledgments
This material is based on research funded by the National Science Center (Poland) (Grant No. UMO-2012/05/E/NZ7/01148).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Sosnowska, A., Rybinska-Fryca, A., Barycki, M., Jagiello, K., Puzyn, T. (2018). Chemoinformatic Approach to Assess Toxicity of Ionic Liquids. In: Nicolotti, O. (eds) Computational Toxicology. Methods in Molecular Biology, vol 1800. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7899-1_26
Download citation
DOI: https://doi.org/10.1007/978-1-4939-7899-1_26
Published:
Publisher Name: Humana Press, New York, NY
Print ISBN: 978-1-4939-7898-4
Online ISBN: 978-1-4939-7899-1
eBook Packages: Springer Protocols