Advertisement

The Use of CRISPR-Cas9 Technology to Reveal Important Aspects of Human Airway Biology

  • Azzeddine Dakhama
  • Hong Wei Chu
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1799)

Abstract

The CRISPR-Cas9 technology is a powerful tool that enables site-specific genome modification (gene editing) and is increasingly used in research to generate gene knockout or knock-in in a variety of cells and organisms. This chapter provides a brief overview of this technology and describes a general methodology applicable to human airway biology research.

Key words

CRISPR-Cas9 Gene editing Lentivirus Lung Airway epithelium Primary cells 

Notes

Acknowledgments

This work was supported by the following grants from NIH: 1U19AI125357, R01HL122321, R01AI106287, and R01HL125128.

The authors wish to thank Max Seibold, Jamie Everman, and Ari Stoner (Dr. Max Seibold’s Lab, National Jewish Health, Denver) for technical advice and support.

References

  1. 1.
    Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712CrossRefPubMedGoogle Scholar
  2. 2.
    Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP et al (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 32:960–964CrossRefGoogle Scholar
  3. 3.
    Marraffini LA, Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322:1843–1845CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169:5429–5433CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Mojica FJ, Díez-Villaseñor C, Soria E, Juez G (2000) Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol 36:244–246CrossRefPubMedGoogle Scholar
  6. 6.
    Bolotin A, Quinquis B, Sorokin A, Ehrlich SD (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151:2551–2561CrossRefPubMedGoogle Scholar
  7. 7.
    Pourcel C, Salvignol G, Vergnaud G (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151:653–663CrossRefPubMedGoogle Scholar
  8. 8.
    Marraffini LA (2015) CRISPR-Cas immunity in prokaryotes. Nature 526:55–61CrossRefPubMedGoogle Scholar
  9. 9.
    Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Mojica FJ, Díez-Villaseñor C, García-Martínez J, Almendros C (2009) Short motif sequences determine the targets of the prokaryotic CRISPR defense system. Microbiology 155:733–740CrossRefPubMedGoogle Scholar
  12. 12.
    Bauer DE, Canver MC, Orkin SH (2015) Generation of genomic deletions in mammalian cell lines via CRISPR/Cas9. J Vis Exp 95:e52118Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MedicineNational Jewish HealthDenverUSA

Personalised recommendations