Advertisement

Antibody Modification of p-Aminophenylalanine-Containing Proteins

  • Adel M. ElSohly
  • Chawita Netirojjanakul
  • Matthew B. FrancisEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1798)

Abstract

The use of antibody conjugates for biomedical applications has garnered increased attention due to the ability of antibodies to specifically engage targets of interest. Despite these appealing qualities, the preparation of antibody–protein conjugates remains challenging. Here we detail an approach to attaching targeting antibodies to proteins of interest that combines advances in genetic code expansion and an efficient bioconjugation strategy. As an example, we prepare bacteriophage MS2 viral capsids bearing antibodies on their surfaces for applications in molecular targeting. This technique provides a modular framework to easily prepare antibody–MS2 conjugates in an efficient manner, even at low concentrations of the reacting biomolecules.

Key words

Bacteriophage MS2 Antibodies Bioconjugation Oxidative coupling Genetic code expansion Noncanonical amino acids p-aminophenylalanine 

Notes

Acknowledgments

These studies were funded by the DoD Breast Cancer Research Program (Grants BC061995 and W81XWH-14-0400 to M.B.F. and A.M.E., respectively). C.N. was supported by a Howard Hughes Medical Institute International Student Research Fellowship. LC-MS instrumentation was acquired with NIH Grant 1S10RR022393-01.

References

  1. 1.
    ElSohly AM, Netirojjanakul C, Aanei IL et al (2015) Synthetically modified viral capsids as versatile carriers for use in antibody-based cell targeting. Bioconjug Chem 26:1590–1596CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Mehl RA, Anderson JC, Santoro SW et al (2003) Generation of a bacterium with a 21 amino acid genetic code. J Am Chem Soc 125:935–939CrossRefPubMedGoogle Scholar
  3. 3.
    Carrico ZM, Romanini DW, Mehl RA et al (2008) Oxidative coupling of peptides to a virus capsid containing unnatural amino acids. Chem Commun:1205–1207Google Scholar
  4. 4.
    Behrens CR, Hooker JM, Obermeyer AC et al (2011) Rapid chemoselective bioconjugation through oxidative coupling of anilines and aminophenols. J Am Chem Soc 133:16,398–16,401CrossRefGoogle Scholar
  5. 5.
    Flenniken ML, Willits DA, Harmsen AL et al (2006) Melanoma and lymphocyte cell-specific targeting incorporated into a heat shock protein cage architecture. Chem Biol 13:161–170CrossRefPubMedGoogle Scholar
  6. 6.
    Suci P, Kang S, Gmür R et al (2010) Targeted delivery of a photosensitizer to aggregatibacter actino-mycetemcomitans biofilm. Antimicrob Agents Chemother 54:2489–2496CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wang Q, Kaltgrad E, Lin T et al (2002) Natural supramolecular building blocks: wild-type cowpea mosaic virus. Chem Biol 9:805–811CrossRefPubMedGoogle Scholar
  8. 8.
    Douglas T, Young M (2006) Viruses: making friends with old foes. Science 312:873–875CrossRefPubMedGoogle Scholar
  9. 9.
    Kovacs EW, Hooker JM, Romanini DW et al (2007) Dual-surface-modified bacteriophage MS2 as an ideal scaffold for a viral capsid-based drug delivery system. Bioconjug Chem 18:1140–1147CrossRefPubMedGoogle Scholar
  10. 10.
    Tong GJ, Hsiao SC, Carrico ZM et al (2009) Viral capsid DNA aptamer conjugates as multivalent cell-targeting vehicles. J Am Chem Soc 131:11,174–11,178CrossRefGoogle Scholar
  11. 11.
    Wu W, Hsiao SC, Carrico ZM et al (2009) Genome-free viral capsids as multivalent carriers for taxol delivery. Angew Chem Int Ed 48:9493–9497CrossRefGoogle Scholar
  12. 12.
    Garimella PD, Datta A, Romanini DW et al (2011) Multivalent, high-relaxivity MRI contrast agents using rigid cysteine-reactive gadolinium complexes. J Am Chem Soc 133:14,704–14,709CrossRefGoogle Scholar
  13. 13.
    Bertrand N, Wu J, Xu X et al (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Adel M. ElSohly
    • 1
  • Chawita Netirojjanakul
    • 1
  • Matthew B. Francis
    • 1
    • 2
    Email author
  1. 1.Department of ChemistryUniversity of CaliforniaBerkeleyUSA
  2. 2.Materials Sciences DivisionLawrence Berkeley National LaboratoriesBerkeleyUSA

Personalised recommendations