Abstract
Nanostructured materials can be interfaced with living cells to enable unique chemical and biological outcomes. However, it is challenging to precisely control the shape and chemical composition of submillimeter sized, cell-associated materials. In this protocol, we describe how to genetically modify and isolate a self-assembling filament protein from Salmonella enterica, PrgI, to bind Au nanoparticles. Au-conjugated filaments can be chemically reduced in vitro to form contiguous wires and networks that are several micrometers in length. We also describe a strategy to assemble PrgI-based filaments on live cells, which can then be sheared or remain tethered to cells for gold conjugation. These methods form the basis of a strategy for interactions between inorganic and organic systems, and could be expanded to introduce interactions with other metal nanoparticles for which peptide binding partners are known.
Key words
- Nanowires
- Biomineralization
- Protein secretion
- Self-assembly
- Microbial electrocatalysis
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Nugroho FA, Iandolo B, Wagner JB et al (2016) Bottom-up nanofabrication of supported noble metal alloy nanoparticle arrays for plasmonics. ACS Nano 23:2871–2879. https://doi.org/10.1021/acsnano.5b08057
Kuroda Y, Kuroda K (2010) Morphosynthesis of nanostructured gold crystals by utilizing interstices in periodically arranged silica nanoparticles as a flexible reaction field. Angew Chem Int Ed 17:6993–6997. https://doi.org/10.1002/anie.201002430
Lee D, Yoon S (2015) Gold nanocube–nanosphere dimers: preparation, plasmon coupling, and surface-enhanced Raman scattering. J Phys Chem C 119:7873–7882. https://doi.org/10.1021/acs.jpcc.5b00314
Xu G-K, Li Y, Li B et al (2009) Self-assembled lipid nanostructures encapsulating nanoparticles in aqueous solution. Soft Matt 5:3977–3983. https://doi.org/10.1039/B906918F
Yin P, Choi HM, Calvert CR et al (2008) Programming biomolecular self-assembly pathways. Nature 451:318–322. https://doi.org/10.1038/nature06451
Gradišar H, Jerala R (2014) Self-assembled bionanostructures: proteins following the lead of DNA nanostructures. J Nanobiotech 12:4. https://doi.org/10.1186/1477-3155-12-4
Chen CL, Rosi NL (2010) Peptide-based methods for the preparation of nanostructured inorganic materials. Angew Chem Int Ed 49:1924–1942. https://doi.org/10.1002/anie.200903572
Lee SW, Mao C, Flynn CE et al (2002) Ordering of quantum dots using genetically engineered viruses. Science 296:892–895. https://doi.org/10.1126/science.1068054
Shenton W, Douglas T, Young M et al (1999) Inorganic–organic nanotube composites from template mineralization of tobacco mosaic virus. Adv Mater 11:253–256. https://doi.org/10.1002/(SICI)1521-4095(199903)11:3<253::AID-ADMA253>3.0.CO;2-7
Schoen AP, Schoen DT, Huggins KN et al (2011) Template engineering through epitope recognition: a modular, biomimetic strategy for inorganic nanomaterial synthesis. J Am Chem Soc 133:18202–18207. https://doi.org/10.1021/ja204732n
Scheibel T, Parthasarathy R, Sawicki G et al (2003) Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc Natl Acad Sci U S A 100:4527–4532. https://doi.org/10.1073/pnas.0431081100
Acar H, Garifullin R, Guler MO (2011) Self-assembled template-directed synthesis of one-dimensional silica and titania nanostructures. Langmuir 27:1079–1084. https://doi.org/10.1021/la104518g
Henry E, Dif A, Schmutz M, Legoff L et al (2011) Crystallization of fluorescent quantum dots within a three-dimensional bio-organic template of actin filaments and lipid membranes. Nano Lett 11:5443–5448. https://doi.org/10.1021/nl203216q
Boal AK, Headley TJ, Tissot RG et al (2003) Microtubule-templated biomimetic mineralization of lepidocrocite. Adv Func Mater 14:19–24. https://doi.org/10.1002/adfm.200304435
Burkinshaw BJ, Strynadka NC (2014) Assembly and structure of the T3SS. Biochim Biophys Acta 1843:1649–1663. https://doi.org/10.1016/j.bbamcr.2014.01.035
Rathinavelan T, Lara-Tejero M, Lefebre M et al (2014) NMR model of PrgI-SipD interaction and its implications in the needle-tip assembly of the Salmonella type III secretion system. J Mol Biol 426:2958–2969. https://doi.org/10.1016/j.jmb.2014.06.009
Loquet A, Sgourakis NG, Gupta R et al (2012) Atomic model of the type III secretion system needle. Nature 486:276–279. https://doi.org/10.1038/nature11079
Azam A, Tullman-Ercek D (2016) Type-III secretion filaments as scaffolds for inorganic nanostructures. J R Soc Interface 13:20150938. https://doi.org/10.1098/rsif.2015.0938
Azam A, Li C, Metcalf K et al (2015) Type III secretion as a generalizable strategy for the production of full-length biopolymer-forming proteins. Biotechnol Bioeng 113:2313–2320. https://doi.org/10.1002/bit.25656
Glasgow AA, Wong HT, Tullman-Ercek D (2017) A secretion-amplification role for Salmonella enterica translocon protein SipD. ACS Synth Biol 6(6):1006–1015. https://doi.org/10.1021/acssynbio.6b00335
Metcalf KJ, Finnerty C, Azam A et al (2014) Using transcriptional control to increase titer of secreted heterologous proteins by the type III secretion system. Appl Environ Microbiol 80:5927–5934. https://doi.org/10.1128/AEM.01330-14
Thomason L, Court DL, Bubunenko M et al (2007) Recombineering: genetic engineering in bacteria using homologous recombination. Curr Protoc Mol Biol 78:1.16.1–1.16.24. https://doi.org/10.1002/0471142727.mb0116s78
Kubori T, Sukhan A, Aizawa SI et al (2000) Molecular characterization and assembly of the needle complex of the Salmonella typhimurium type III protein secretion system. Proc Natl Acad Sci U S A 97:10225–10230. https://doi.org/10.1073/pnas.170128997
Poyraz O, Schmidt H, Seidel K et al (2010) Protein refolding is required for assembly of the type three secretion needle. Nat Struct Mol Biol 17:788–792. https://doi.org/10.1038/nsmb.1822
Ikebe T, Iyoda S, Kutsukake K (1999) Promoter analysis of the class 2 flagellar operons of Salmonella. Genes Genet Syst 74:179–183. https://doi.org/10.1266/ggs.74.179
Wang Y, Ouellette AN, Egan CW et al (2007) Differences in the electrostatic surfaces of the type III secretion needle proteins PrgI, BsaL, and MxiH. J Mol Biol 371:1304–1314. https://doi.org/10.1016/j.jmb.2007.06.034
Brown KR, Natan MJ (1998) Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surfaces. Langmuir 14:726–728. https://doi.org/10.1021/la970982u
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Glasgow, A.A., Tullman-Ercek, D. (2018). Type III Secretion Filaments as Templates for Metallic Nanostructure Synthesis. In: Udit, A. (eds) Protein Scaffolds. Methods in Molecular Biology, vol 1798. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7893-9_12
Download citation
DOI: https://doi.org/10.1007/978-1-4939-7893-9_12
Published:
Publisher Name: Humana Press, New York, NY
Print ISBN: 978-1-4939-7892-2
Online ISBN: 978-1-4939-7893-9
eBook Packages: Springer Protocols