Advertisement

Immunohistochemical Assessment as a Tool for Investigating Developmental Toxicity in Zebrafish (Danio rerio)

  • Carla Santos
  • Maria de Lurdes PintoEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1797)

Abstract

Immunohistochemistry has been proven to be one of the most important ancillary techniques in understanding early development processes as it allows both a focus on specific, individual cell behaviors as well as an expanded view of tissue architecture, critical to the morphogenesis of complex and integrated organ systems. The zebrafish (Danio rerio) is a well-established model in the area of developmental toxicology and immunohistochemistry methods have been extensively applied to embryos and larvae to ascertain abnormal development resulting from toxic exposure. This chapter outlines the immunohistochemistry methods (conventional and immunofluorescence) optimized for whole-mount zebrafish embryo and larvae, as well as common pitfalls and suggested ways to overcome them.

Key words

Immunohistochemistry Immunofluorescence Zebrafish Early development Toxicity 

Notes

Acknowledgments

FEDER funds through the Operational Competitiveness Programme—COMPETE and National Funds through FCT—Fundação para a Ciência e a Tecnologia under the project FCOMP-01-0124-FEDER-028683 (PTDC/CVT-WEL/4672/2012). The authors thank Francisco Seco for technical assistance.

References

  1. 1.
    Ramos-Vara JA, Kiupel M, Baszler T et al (2008) Suggested guidelines for immunohistochemical techniques in veterinary diagnostic laboratories. J Vet Diagn Investig 20:393–413CrossRefGoogle Scholar
  2. 2.
    Ramos-Vara JA, Miller MA (2014) When tissue antigens and antibodies get along: revisiting the technical aspects of immunohistochemistry—the red, brown, and blue technique. Vet Pathol 51(1):42–87. https://doi.org/10.1177/0300985813505879 CrossRefPubMedGoogle Scholar
  3. 3.
    Busch W (2011) The zebrafish embryo model in toxicology and teratology. Reprod Toxicol 31(4):585–588CrossRefPubMedGoogle Scholar
  4. 4.
    MacRae CA, Peterson RT (2015) Zebrafish as tools for drug discovery. Nat Rev Drug Discov 14:721–731. https://doi.org/10.1038/nrd4627 CrossRefPubMedGoogle Scholar
  5. 5.
    Grandel H, Kaslin J, Ganz J et al (2006) Neural stem cells and neurogenesis in the adult zebrafish brain: origin, proliferation dynamics, migration and cell fate. Dev Biol 295(1):263–277CrossRefPubMedGoogle Scholar
  6. 6.
    Ergul AA, Halim DO, Adams M (2013) Bromodeoxyuridine (BrdU) labeling and immunohistochemical detection in adult zebrafish brain. Protoc Exch:1–8. https://doi.org/10.1038/protex.2013.087
  7. 7.
    Verduzco D, Amatruda J (2011) Analysis of cell proliferation, senescence, and cell death in zebrafish embryos. Methods Cell Biol 101(214):19–38. https://doi.org/10.1016/B978-0-12-387036-0.00002-5 CrossRefPubMedGoogle Scholar
  8. 8.
    Farmilo AJ, Stead RH (2006) Fixation and processing. In: Key M (ed) Immunohistochemical staining methods, 4th edn. Dako, Carpinteria, CAGoogle Scholar
  9. 9.
    Colley CC, Stead RH (2013) Fixation and other pre-analytical factors. In: Taylor RT, Rudbeck L (eds) Immunohistochemistry guidebook, 6th edn. Dako, DenmarkGoogle Scholar
  10. 10.
    Pace GE (2006) Ancillary methods in immunohistochemistry. In: Key M (ed) Immunohistochemical staining methods, 4th edn. Dako, Carpinteria, CAGoogle Scholar
  11. 11.
    Shi S-R, Shi YS, Taylor CR (2015) Antigen retrieval immunohistochemistry: review and future prospects in research and diagnosis over two decades. J Histochem Cytochem 59(1):13–32. https://doi.org/10.1369/jhc.2010.957191 CrossRefGoogle Scholar
  12. 12.
    Jacobsen L, Nielsen M, Manson S et al (2013) Staining protocol optimization. In: Taylor RT, Rudbeck L (eds) Immunohistochemistry guidebook, 6th edn. Dako, DenmarkGoogle Scholar
  13. 13.
    Shynia M, Koshida S, Sawada A et al (2001) Fgf signaling through MAPK cascade is required for development of the subpallian telencephalon in zebrafish embryos. Development 128:4153–4164Google Scholar
  14. 14.
    Petersen K, Pedersen HC (2013) Detection methods. In: Taylor RT, Rudbeck L (eds) Immunohistochemistry guidebook, 6th edn. Dako, DenmarkGoogle Scholar
  15. 15.
    Greb C (2012) Fluorescent dyes an overview. Leica Science Lab. http://www.leica-microsystems.com/science-lab/fluorescent-dyes. Accessed 21 June 2017

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Medicina VeterináriaEscola Universitária Vasco da GamaCoimbraPortugal
  2. 2.Centro de Ciência Animal e Veterinária (CECAV)Universidade de Trás-os-Montes e Alto Douro (UTAD)Vila RealPortugal
  3. 3.Departamento de Ciências VeterináriasUniversidade de Trás-os-Montes e Alto Douro (UTAD)Vila RealPortugal
  4. 4.Laboratório de Histologia e Anatomia Patológica (LHAP)Universidade de Trás-os-Montes e Alto Douro (UTAD)Vila RealPortugal

Personalised recommendations