Skip to main content

Behavioral Profiling of Zebrafish (Danio rerio) Larvae Following Teratogen Exposure

Part of the Methods in Molecular Biology book series (MIMB,volume 1797)

Abstract

Apart from morphological, biochemical, and genetic alterations induced by teratogen compounds, there is an increase interest in characterizing behavioral alterations. Behavior is a sensitive parameter that can provide information regarding developmental disruptions noninvasively, as it is the result of brain processes. Behavioral disturbances interfere with animals’ capacity to cope with the environment, having an impact on the organism’s life. Hereby, it is proposed behavioral assays consisting on recording larvae in multiwell plates and video analysis with a proper software, allowing for teratogen screening of behavior. How to evaluate locomotor, anxiety-like and avoidance-like behaviors, and the integrity of sensory-motor functions and learning are discussed in this chapter.

Key words

  • Teratogen
  • Zebrafish larvae
  • Behavior
  • Activity
  • Thigmotaxis
  • Avoidance behavior
  • Dark–light challenge
  • Startle response

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-7883-0_22
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-7883-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. He JH, Gao JM, Huang CJ, Li CQ (2014) Zebrafish models for assessing developmental and reproductive toxicity. Neurotoxicol Teratol 42:35–42. https://doi.org/10.1016/j.ntt.2014.01.006

    CrossRef  PubMed  CAS  Google Scholar 

  2. Cottrell JE, Hartung J (2012) Developmental disability in the young and postoperative cognitive dysfunction in the elderly after anesthesia and surgery: do data justify changing clinical practice? Mt Sinai J Med 79(1):75–94. https://doi.org/10.1002/msj.21283

    CrossRef  PubMed  Google Scholar 

  3. Felix LM, Serafim C, Valentim AM et al (2016) Embryonic stage-dependent teratogenicity of ketamine in zebrafish (Danio rerio). Chem Res Toxicol 29(8):1298–1309. https://doi.org/10.1021/acs.chemrestox.6b00122

    CrossRef  PubMed  CAS  Google Scholar 

  4. Sharma S, Coombs S, Patton P, Burt de Perera T (2009) The function of wall-following behaviors in the Mexican blind cavefish and a sighted relative, the Mexican tetra (Astyanax). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 195(3):225–240. https://doi.org/10.1007/s00359-008-0400-9

    CrossRef  PubMed  Google Scholar 

  5. Treit D, Fundytus M (1988) Thigmotaxis as a test for anxiolytic activity in rats. Pharmacol Biochem Behav 31(4):959–962

    CrossRef  PubMed  CAS  Google Scholar 

  6. Grillon C (2008) Models and mechanisms of anxiety: evidence from startle studies. Psychopharmacology (Berl) 199(3):421–437. https://doi.org/10.1007/s00213-007-1019-1

    CrossRef  CAS  Google Scholar 

  7. Roberts AC, Reichl J, Song MY et al (2011) Habituation of the C-start response in larval zebrafish exhibits several distinct phases and sensitivity to NMDA receptor blockade. PLoS One 6(12):e29132. https://doi.org/10.1371/journal.pone.0029132

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  8. Creton R (2009) Automated analysis of behavior in zebrafish larvae. Behav Brain Res 203(1):127–136. https://doi.org/10.1016/j.bbr.2009.04.030

    CrossRef  PubMed  Google Scholar 

  9. Felix LM, Antunes LM, Coimbra AM, Valentim AM (2017) Behavioral alterations of zebrafish larvae after early embryonic exposure to ketamine. Psychopharmacology (Berl) 234(4):549–558. https://doi.org/10.1007/s00213-016-4491-7

    CrossRef  CAS  Google Scholar 

  10. Ali S, Champagne DL, Alia A, Richardson MK (2011) Large-scale analysis of acute ethanol exposure in zebrafish development: a critical time window and resilience. PLoS One 6(5):e20037. https://doi.org/10.1371/journal.pone.0020037

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  11. Norton WHJ (2012) Measuring larval zebrafish behavior: locomotion, thigmotaxis, and startle. In: Kalueff AV, Stewart AM (eds) Zebrafish protocols for neurobehavioral research. Humana Press, Totowa, NJ, pp 3–20. https://doi.org/10.1007/978-1-61779-597-8_1

    CrossRef  Google Scholar 

  12. Best JD, Berghmans S, Hunt JJFG et al (2007) Non-associative learning in larval zebrafish. Neuropsychopharmacology 33(5):1206–1215

    CrossRef  PubMed  CAS  Google Scholar 

  13. Buske C, Gerlai R (2014) Diving deeper into zebrafish development of social behavior: analyzing high resolution data. J Neurosci Methods 234:66–72. https://doi.org/10.1016/j.jneumeth.2014.06.019

    CrossRef  PubMed  Google Scholar 

  14. Clark DT (1981) Visual responses in developing zebrafish (Brachydanio Rerio). University of Oregon, Eugene, OR

    Google Scholar 

  15. Emran F, Rihel J, Adolph AR et al (2007) OFF ganglion cells cannot drive the optokinetic reflex in zebrafish. Proc Natl Acad Sci U S A 104(48):19126–19131. https://doi.org/10.1073/pnas.0709337104

    CrossRef  PubMed  PubMed Central  Google Scholar 

  16. Strahle U, Scholz S, Geisler R et al (2012) Zebrafish embryos as an alternative to animal experiments-A commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod Toxicol 33(2):128–132. https://doi.org/10.1016/j.reprotox.2011.06.121

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Margarida Monteiro (M.S.), Jorge Ferreira (M.S., Instituto de Investigação e Inovação em Saúde, Porto, Portugal), and Luís Félix (PhD, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal) for their support in the behavioral tests and analysis, and Pedro Silva for his support in the Arduino assembly and programming. This work was supported by a postdoctoral fellowship SFRH/BPD/103006/2014 provided by Fundação para a Ciência e Tecnologia (FCT), Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana M. Valentim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Valentim, A.M. (2018). Behavioral Profiling of Zebrafish (Danio rerio) Larvae Following Teratogen Exposure. In: Félix, L. (eds) Teratogenicity Testing. Methods in Molecular Biology, vol 1797. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7883-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7883-0_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7882-3

  • Online ISBN: 978-1-4939-7883-0

  • eBook Packages: Springer Protocols