Skip to main content

Spinal Cord Injury

  • Protocol
  • First Online:
Clinical Trials in Neurology

Part of the book series: Neuromethods ((NM,volume 138))

Abstract

This book chapter discusses detailed aspects that were analyzed regarding the design and methodology of 110 most highly cited clinical trials in Spinal Cord Injury. The aim of this book chapter is to provide the reader a summarized analysis of detailed aspects of clinical trial design in this group of population in order to optimize the development of future trials. A literature search was performer utilizing the search engine “web of science” in order to collect the data of the 110 most cited articles in SCI for the last 10 years. A detailed discussion based on the criteria of the consort guidelines is provided with the most common findings as well as suggestions for the improvement on the design of future SCI clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheriyan T, Ryan DJ, Weinreb JH et al (2014) Spinal cord injury models: a review. Spinal Cord 52:588–595. https://doi.org/10.1038/sc.2014.91

    Article  PubMed  CAS  Google Scholar 

  2. McDonald JW, Sadowsky C (2002) Spinal-cord injury. Lancet 359:417–425. https://doi.org/10.1016/S0140-6736(02)07603-1

    Article  PubMed  Google Scholar 

  3. Sadowsky C, Volshteyn O, Schultz L, McDonald JW (2002) Spinal cord injury. Disabil Rehabil 24:680–687. https://doi.org/10.1080/09638280110110640

    Article  PubMed  CAS  Google Scholar 

  4. Sköld C, Levi R, Seiger A (1999) Spasticity after traumatic spinal cord injury: nature, severity, and location. Arch Phys Med Rehabil 80:1548–1557. https://doi.org/10.1016/S0003-9993(99)90329-5

    Article  PubMed  Google Scholar 

  5. Devivo MJ (2012) Epidemiology of traumatic spinal cord injury: trends and future implications. Spinal Cord 50:365–372. https://doi.org/10.1038/sc.2011.178

    Article  PubMed  CAS  Google Scholar 

  6. White JP, Thumbikat P (2012) Acute spinal cord injury. Surgery 30:326–332. https://doi.org/10.1016/j.mpsur.2012.05.005

    Article  Google Scholar 

  7. Proctor MR (2002) Spinal cord injury. Crit Care Med 30:S489–S499. https://doi.org/10.1097/01.CCM.0000034132.14832.6D

    Article  PubMed  Google Scholar 

  8. Dietz V, Fouad K (2014) Restoration of sensorimotor functions after spinal cord injury. Brain 137:654–667. https://doi.org/10.1093/brain/awt262

    Article  PubMed  Google Scholar 

  9. van den Brand R, Heutschi J, Barraud Q et al (2012) Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science 336:1182–1185. https://doi.org/10.1126/science.1217416

    Article  PubMed  CAS  Google Scholar 

  10. Van Den Berg MEL, Castellote JM, Mahillo-Fernandez I, De Pedro-Cuesta J (2010) Incidence of spinal cord injury worldwide: a systematic review. Neuroepidemiology 34:184–192. https://doi.org/10.1159/000279335

    Article  PubMed  Google Scholar 

  11. Reier PJ, Lane MA, Hall ED et al (2012) Translational spinal cord injury research: preclinical guidelines and challenges. Spinal Cord Inj 109:411–433. https://doi.org/10.1016/B978-0-444-52137-8.00026-7

    Article  Google Scholar 

  12. Fawcett JW, Curt A, Steeves JD et al (2007) Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal Cord 45:190–205. https://doi.org/10.1038/sj.sc.3102007

    Article  PubMed  CAS  Google Scholar 

  13. Schulz KF, Altman DG, Moher D, Group C (2010) CONSORT 2010 Statement: updated guidelines for reporting parallel group randomised trials. BMC Med 8:18. https://doi.org/10.1186/1741-7015-8-18

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tan G, Holmes SA (2010) Effect of Dronabinol on Central neuropathic pain after spinal cord injury: a pilot study. Am J Phys Med Rehabil 89:840–848. https://doi.org/10.1097/PHM.0b013e3181f1c4ec

    Article  PubMed  Google Scholar 

  15. Jia C, Liao L-M, Chen G, Sui Y (2013) Detrusor botulinum toxin A injection significantly decreased urinary tract infection in patients with traumatic spinal cord injury. Spinal Cord 51:487–490. https://doi.org/10.1038/sc.2012.180

    Article  PubMed  CAS  Google Scholar 

  16. Pal R, Venkataramana NK, Jaan M et al (2009) Ex vivo-expanded autologous bone marrow-derived mesenchymal stromal cells in human spinal cord injury/paraplegia: a pilot clinical study. Cytotherapy 11:897–911. https://doi.org/10.3109/14653240903253857

    Article  PubMed  CAS  Google Scholar 

  17. Lima C, Pratas-Vital J, Escada P et al (2006) Olfactory mucosa autografts in human spinal cord injury: a pilot clinical study. J Spinal Cord Med 29(3):191–203

    Article  PubMed  PubMed Central  Google Scholar 

  18. Féron F, Perry C, Cochrane J, Licina P et al (2005) Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain 128:2951–2960. https://doi.org/10.1093/brain/awh657

    Article  PubMed  Google Scholar 

  19. Knoller N, Auerbach G, Fulga V, Zelig G, Attias J, Bakimer R, Marder JB, Yoles E, Belkin M, Schwartz M, Hadani M (2005) Clinical experience using incubated autologous macrophages as a treatment for complete spinal cord injury: phase I study results. J Neurosurg Spine 3:173–181

    Article  PubMed  Google Scholar 

  20. Karamouzian S, Nematollahi-mahani SN, Nakhaee N (2012) Clinical safety and primary efficacy of bone marrow mesenchymal cell transplantation in subacute spinal cord injured patients. Clin Neurol Neurosurg 114:935–939. https://doi.org/10.1016/j.clineuro.2012.02.003

    Article  PubMed  Google Scholar 

  21. Theiss RD, Hornby TG, Rymer WZ, Schmit BD (2011) Riluzole decreases flexion withdrawal reflex but not voluntary ankle torque in human chronic spinal cord injury. J Neurophysiol 105:2781–2790. https://doi.org/10.1152/jn.00570.2010

    Article  PubMed  CAS  Google Scholar 

  22. Wong YW, Tam S, So KF et al (2011) ORIGINAL ARTICLE: A three-month, open-label, single-arm trial evaluating the safety and pharmacokinetics of oral lithium in patients with chronic spinal cord injury. Spinal Cord 49:94–98. https://doi.org/10.1038/sc.2010.69

    Article  PubMed  CAS  Google Scholar 

  23. Yang ML, Li JJ, So KF et al (2012) Efficacy and safety of lithium carbonate treatment of chronic spinal cord injuries: a double-blind, randomized, placebo-controlled clinical trial. Spinal Cord 50:141–146. https://doi.org/10.1038/sc.2011.126

    Article  PubMed  CAS  Google Scholar 

  24. Pooyania S, Ethans K, Szturm T et al (2010) A randomized, double-blinded, crossover pilot study assessing the effect of nabilone on spasticity in persons with spinal cord injury. Arch Phys Med Rehabil 91:703–707. https://doi.org/10.1016/j.apmr.2009.12.025

    Article  PubMed  Google Scholar 

  25. Steeves JD, Lammertse D, Curt A et al (2007) Guidelines for the conduct of clinical trials for spinal cord injury (SCI) as developed by the ICCP panel: clinical trial outcome measures. Spinal Cord 45:206–221. https://doi.org/10.1038/sj.sc.3102008

    Article  PubMed  CAS  Google Scholar 

  26. Siddall PJ, Cousins MJ, Otte A et al (2006) Pregabalin in central neuropathic pain associated with spinal cord injury: a placebo-controlled trial. Neurology 67(10):1792–1800

    Article  CAS  PubMed  Google Scholar 

  27. Cardenas DD, Nieshoff EC, Whalen E, Scavone JM (2013) A randomized trial of pregabalin in patients with neuropathic pain due to spinal cord injury. Neurology 80(6):533–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Richardson EJ, Ness TJ, Redden DT et al (2012) Effects of nicotine on spinal cord injury pain vary among subtypes of pain and smoking status: results from a randomized, controlled experiment. J Pain 13:1206–1214. https://doi.org/10.1016/j.jpain.2012.09.005

    Article  PubMed  CAS  Google Scholar 

  29. Grijalva I, Guizar-sahag G, Casta G (2010) High doses of 4-aminopyridine improve functionality in chronic complete spinal cord injury patients with MRI evidence of cord continuity. Arch Med Res. https://doi.org/10.1016/j.arcmed.2010.10.001

  30. Cardenas DD, Ditunno JF, Graziani V et al (2013) Two phase 3, multicenter, randomized, placebo-controlled clinical trials of fampridine-SR for treatment of spasticity in chronic spinal cord injury. Spinal Cord 52:70–76. https://doi.org/10.1038/sc.2013.137

    Article  PubMed  Google Scholar 

  31. Medina LA., Wysk RA, Okudan Kremer GE (2011) A review of design for X methods for medical devices: the introduction of a design for FDA approach. In: Vol. 9 23rd Int. Conf. Des. Theory Methodol. 16th Des. Manuf. Life Cycle Conf. pp 849–861

    Google Scholar 

  32. Burlington DB (1996) FDA regulation of medical devices. FDA perspective. Ann Thorac Surg 61:482–484; discussion 484–498

    Article  CAS  PubMed  Google Scholar 

  33. Fregni F, Boggio PS, Lima MC et al (2006) A sham-controlled, phase II trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury. Pain 122:197–209. https://doi.org/10.1016/j.pain.2006.02.023

    Article  PubMed  Google Scholar 

  34. Soler MD, Kumru H, Pelayo R et al (2010) Effectiveness of transcranial direct current stimulation and visual illusion on neuropathic pain in spinal cord injury. Brain 133:2565–2577. https://doi.org/10.1093/brain/awq184

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tan G, Rintala DH, Jensen MP et al (2011) Efficacy of cranial electrotherapy stimulation for neuropathic pain following spinal cord injury: a multi-site randomized controlled trial with a secondary 6-month open-label phase. J Spinal Cord Med 34:285–296

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wrigley PJ, Gustin SM, Mcindoe LN et al (2013) Longstanding neuropathic pain after spinal cord injury is refractory to transcranial direct current stimulation: a randomized controlled trial. Pain 154:2178–2184. https://doi.org/10.1016/j.pain.2013.06.045

    Article  PubMed  Google Scholar 

  37. Celik EC, Erhan B, Gunduz B, Lakse E (2013) The effect of low-frequency TENS in the treatment of neuropathic pain in patients with spinal cord injury. Spinal Cord 51:334–337. https://doi.org/10.1038/sc.2012.159

    Article  PubMed  CAS  Google Scholar 

  38. Müller-Putz GR, Daly I, Kaiser V (2014) Motor imagery-induced EEG patterns in individuals with spinal cord injury and their impact on brain-computer interface accuracy. J Neural Eng 11:35011. https://doi.org/10.1088/1741-2560/11/3/035011

    Article  Google Scholar 

  39. Jetté F, Côté I, Meziane HB, Mercier C (2013) Effect of single-session repetitive transcranial magnetic stimulation applied over the hand versus leg motor area on pain after spinal cord injury. Neurorehabil Neural Repair 27:636–643. https://doi.org/10.1177/1545968313484810

    Article  PubMed  Google Scholar 

  40. Thomas SL, Gorassini MA, Sarah L (2005) Increases in corticospinal tract function by treadmill training after incomplete spinal cord injury. J Neurophysiol 94:2844–2855. https://doi.org/10.1152/jn.00532.2005.

    Article  PubMed  Google Scholar 

  41. Winchester P, Mccoll R, Querry R et al (2015) Changes in supraspinal activation patterns following robotic locomotor therapy in motor-incomplete spinal cord injury. Neurorehabil Neural Repair 19:313–324. https://doi.org/10.1177/1545968305281515

    Article  Google Scholar 

  42. Zariffa J, Kapadia N, Kramer JLK et al (2011) Feasibility and efficacy of upper limb robotic rehabilitation in a subacute cervical spinal cord injury population. Spinal Cord 50:220–226. https://doi.org/10.1038/sc.2011.104

    Article  PubMed  Google Scholar 

  43. Johnston TE, Modlesky CM, Betz RR, Lauer RT (2011) Muscle changes following cycling and/or electrical stimulation in pediatric spinal cord injury. Arch Phys Med Rehabil 92:1937–1943. https://doi.org/10.1016/j.apmr.2011.06.031

    Article  PubMed  Google Scholar 

  44. Lauer RT, Smith BT, Mulcahey MJ et al (2011) Effects of cycling and/or electrical stimulation on bone mineral density in children with spinal cord injury. Spinal Cord 49:917–923. https://doi.org/10.1038/sc.2011.19

    Article  PubMed  CAS  Google Scholar 

  45. Roth EJ, Stenson KW, Powley S et al (2010) Expiratory muscle training in spinal cord injury: a randomized controlled trial. Arch Phys Med Rehabil 91:857–861. https://doi.org/10.1016/j.apmr.2010.02.012

    Article  PubMed  Google Scholar 

  46. Boswell-Ruys CL, Harvey LA, Barker JJ et al (2009) Training unsupported sitting in people with chronic spinal cord injuries: a randomized controlled trial. Spinal Cord 48:138–143. https://doi.org/10.1038/sc.2009.88

    Article  PubMed  Google Scholar 

  47. Mcbain RA, Boswell-Ruys CL, Lee BB et al (2013) Abdominal muscle training can enhance cough after spinal cord injury. Neurorehabil Neural Repair 27:834–843. https://doi.org/10.1177/1545968313496324

    Article  PubMed  Google Scholar 

  48. Bakkum AJT, de Groot S, van der Woude LHV, Janssen TWJ (2012) The effects of hybrid cycle training in inactive people with long-term spinal cord injury: design of a multicenter randomized controlled trial. Disabil Rehabil 35:1–6. https://doi.org/10.3109/09638288.2012.715719

    Article  Google Scholar 

  49. Nussbaum EL, Flett H et al (2013) Ultraviolet-C irradiation in the management of pressure ulcers in people with spinal cord injury: a randomized, placebo controlled trial. Arch Phys Med Rehabil 94:650–659. https://doi.org/10.1016/j.apmr.2012.12.003

    Article  PubMed  Google Scholar 

  50. Nussbaum EL, Biemann I, Mustard B (1994) Comparison of ultrasound/ultraviolet-C and laser for treatment of pressure ulcers in patients with spinal cord injury. Phys Ther 74:812–823; discussion 823–825

    Article  CAS  PubMed  Google Scholar 

  51. Kirshblum SC, Waring W, Biering-Sorensen F et al (2011) Reference for the 2011 revision of the international standards for neurological classification of spinal cord injury. J Spinal Cord Med 34:547–554. https://doi.org/10.1179/107902611X13186000420242

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ho CH, Wuermser LA, Priebe MM et al (2007) Spinal cord injury medicine. 1. Epidemiology and classification. Arch Phys Med Rehabil. https://doi.org/10.1016/j.apmr.2006.12.001

  53. El Masry WS, Tsubo M, Katoh S et al (1996) Validation of the American Spinal Injury Association (ASIA) motor score and the National Acute Spinal Cord Injury Study (NASCIS) motor score. Spine (Phila Pa 1976) 21:614–619. https://doi.org/10.1097/00007632-199603010-00015

    Article  CAS  Google Scholar 

  54. Takahashi H, Yamazaki M, Okawa A, Sakuma T (2012) Neuroprotective therapy using granulocyte colony-stimulating factor for acute spinal cord injury: a phase I/IIa clinical trial. Eur Spine J 21:2580–2587. https://doi.org/10.1007/s00586-012-2213-3

    Article  PubMed  PubMed Central  Google Scholar 

  55. Casha S, Zygun D, Mcgowan MD et al (2012) Results of a phase II placebo-controlled randomized trial of minocycline in acute spinal cord injury. Brain 135:1224–1236. https://doi.org/10.1093/brain/aws072

    Article  PubMed  Google Scholar 

  56. Fehlings MG, Theodore N, Harrop J et al (2011) A phase I/IIa clinical trial of a recombinant Rho protein antagonist in acute spinal cord injury. J Neurotrauma 28:787–796. https://doi.org/10.1089/neu.2011.1765

    Article  PubMed  Google Scholar 

  57. Fregni F, Freedman S, Pascual-Leone A (2007) Recent advances in the treatment of chronic pain with non-invasive brain stimulation techniques. Lancet Neurol 6:188–191. https://doi.org/10.1016/S1474-4422(07)70032-7

    Article  PubMed  Google Scholar 

  58. Fregni F, Gimenes R, Valle AC et al (2006) A randomized, sham-controlled, proof of principle study of transcranial direct current stimulation for the treatment of pain in fibromyalgia. Arthritis Rheum 54:3988–3998. https://doi.org/10.1002/art.22195

    Article  PubMed  Google Scholar 

  59. Bubbear JS, Gall A, Middleton FRI et al (2011) Early treatment with zoledronic acid prevents bone loss at the hip following acute spinal cord injury. Osteoporos Int 22:271–279. https://doi.org/10.1007/s00198-010-1221-6

    Article  PubMed  CAS  Google Scholar 

  60. Groah SL, Lichy AM, Libin AV, Ljungberg I (2010) Intensive electrical stimulation attenuates femoral bone loss in acute spinal cord injury. PM R 2:1080–1087. https://doi.org/10.1016/j.pmrj.2010.08.003

    Article  PubMed  Google Scholar 

  61. Domurath B, Kutzenberger J, Kurze I, Knoth HS (2011) Clinical evaluation of a newly developed catheter (SpeediCath Compact Male) in men with spinal cord injury: residual urine and user evaluation. Spinal Cord 49:817–821. https://doi.org/10.1038/sc.2011.14

    Article  PubMed  CAS  Google Scholar 

  62. Chan AW, Tetzlaff JM, Altman DG et al (2013) SPIRIT 2013 statement: defining standard protocol items for clinical trials. Ann Intern Med 158:200–207. https://doi.org/10.7507/1672-2531.20130256

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sankoh AJ (1999) Interim analyses: an update of an FDA reviewer’s experience and perspective. Drug Inf J 33:165–176. https://doi.org/10.1177/009286159903300120

    Article  Google Scholar 

  64. Geller NL, Pocock SJ (1987) Interim analyses in randomized clinical trials: ramifications and guidelines for practitioners. Biometrics 43:213–223. https://doi.org/10.2307/2531962

    Article  PubMed  CAS  Google Scholar 

  65. Vickers AJ (2008) How to randomize. J Soc Integr Oncol 4:194–198. https://doi.org/10.1016/j.bbi.2008.05.010

    Article  Google Scholar 

  66. Schulz KF, Grimes DA (2002) 1-s2.0-S0140673602080297-main. 359:966–970

    Google Scholar 

  67. Schulz KF, Grimes DA (2002) Allocation concealment in randomised trials: defending against deciphering. Lancet 359:614–618. https://doi.org/10.1016/S0140-6736(02)07750-4

    Article  PubMed  Google Scholar 

  68. Schulz KF (1995) Subverting randomization in controlled trials. JAMA 274:1456–1458. https://doi.org/10.1001/jama.274.18.1456

    Article  PubMed  CAS  Google Scholar 

  69. Schulz KF, Chalmers I, Hayes RJ, Altman DG (1995) Empirical evidence of bias with estimates of treatment effects in controlled trials. Unequal group sizes in randomised trials: guarding against guessing. The Lancet JAMA 273:408–412

    Google Scholar 

  70. Pildal J (2005) Comparison of descriptions of allocation concealment in trial protocols and the published reports: cohort study. BMJ 330:1049–1050. https://doi.org/10.1136/bmj.38414.422650.8F

    Article  PubMed  PubMed Central  Google Scholar 

  71. Schulz KF, Grimes DA (2002) Generation of allocation sequences in randomised trials: chance, not choice. Lancet 359:515–519. https://doi.org/10.1016/S0140-6736(02)07683-3

    Article  PubMed  Google Scholar 

  72. Schulz KF, Grimes DA (2002) Blinding in randomised trials: hiding who got what. Lancet 359:696–700. https://doi.org/10.1016/S0140-6736(02)07816-9

    Article  PubMed  Google Scholar 

  73. Landscape T (2015) Medical writings

    Google Scholar 

  74. Norrbrink C, Lundeberg T (2011) Acupuncture and massage therapy for neuropathic pain following spinal cord injury: an exploratory study. Acupunct Med 29:108–115. https://doi.org/10.1136/aim.2010.003269

    Article  PubMed  Google Scholar 

  75. Jan Y, Liao F, Jones MA et al (2013) Effect of durations of wheelchair tilt-in-space and recline on skin perfusion over the ischial tuberosity in people with spinal cord injury. Arch Phys Med Rehabil 94:667–672. https://doi.org/10.1016/j.apmr.2012.11.019

    Article  PubMed  Google Scholar 

  76. Schulz KF, Chalmers I, Altman DG (2002) The landscape and lexicon of blinding in randomized trials. Ann Intern Med 136:254–9

    Google Scholar 

  77. Viera AJ, Bangdiwala SI (2007) Eliminating bias in randomized controlled trials: importance of allocation concealment and masking. Fam Med 39:132–137

    PubMed  Google Scholar 

  78. Ottomanelli L, Goetz LL, Suris A et al (2012) Effectiveness of supported employment for veterans with spinal cord injuries: results from a randomized multisite study. Arch Phys Med Rehabil 93:740–747. https://doi.org/10.1016/j.apmr.2012.01.002

    Article  PubMed  Google Scholar 

  79. Mulroy SJ, Thompson L, Kemp B et al (2011) Strengthening and optimal movements for painful shoulders (STOMPS) in chronic spinal cord injury: a randomized controlled trial. Phys Ther 91:305–324. https://doi.org/10.2522/ptj.20100182

    Article  PubMed  Google Scholar 

  80. Heutink M, Post MWM, Bongers-Janssen HMH et al (2012) The CONECSI trial: results of a randomized controlled trial of a multidisciplinary cognitive behavioral program for coping with chronic neuropathic pain after spinal cord injury. Pain 153:120–128. https://doi.org/10.1016/j.pain.2011.09.029

    Article  PubMed  Google Scholar 

  81. Bailar JC, Mosteller F (1988) Guidelines for reporting in articles for medical journals. Ann Intern Med 108:266–273

    Article  PubMed  Google Scholar 

  82. Yusuf S, Wittes J, Probstfield J, Tyroler HA (1991) Analysis and interpretation of treatment effects in subgroups of patients in randomized clinical trials. JAMA 266:93–98

    Article  CAS  PubMed  Google Scholar 

  83. Cardenas DD, Moore KN, Dannels-McClure A et al (2011) Intermittent catheterization with a hydrophilic-coated catheter delays urinary tract infections in acute spinal cord injury: a prospective, randomized, multicenter trial. Pm R 3:408–417. https://doi.org/10.1016/j.pmrj.2011.01.001

    Article  PubMed  Google Scholar 

  84. Ordonez FJ, Rosety MA, Camacho A et al (2013) Arm-cranking exercise reduced oxidative damage in adults with chronic spinal cord injury. Arch Phys Med Rehabil 94:2336–2341. https://doi.org/10.1016/j.apmr.2013.05.029

    Article  PubMed  Google Scholar 

  85. Rosety-Rodriguez M, Camacho A, Rosety I et al (2014) Low-grade systemic inflammation and leptin levels were improved by arm cranking exercise in adults with chronic spinal cord injury. Arch Phys Med Rehabil 95:297–302. https://doi.org/10.1016/j.apmr.2013.08.246

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe Fregni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Saleh Velez, F.G., Pinto, C.B., Fregni, F. (2018). Spinal Cord Injury. In: Fregni, F. (eds) Clinical Trials in Neurology. Neuromethods, vol 138. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7880-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7880-9_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7879-3

  • Online ISBN: 978-1-4939-7880-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics