Skip to main content

The Ras Recruitment System (RRS) for the Identification and Characterization of Protein–Protein Interactions

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1794))

Abstract

Protein–protein interactions are the basis for all biochemical cellular activities. The Ras Recruitment System, RRS, is a method for studying interactions between known proteins as well as identification of novel interactions following a cDNA library screen. The method is based on the recruitment of the Ras protein to the plasma membrane via protein–protein interactions. The interaction between proteins is studied in a temperature-sensitive yeast Saccharomyces cerevisiae mutant strain. This mutant is able to grow under restrictive temperature conditions when the Ras viability pathway becomes activated as a result of a positive protein–protein interaction. The RRS complements the limitations and problems that arise from the yeast two-hybrid system.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Figeys D (2008) Mapping the human protein interactome. Cell Res 18:716–724

    Article  PubMed  CAS  Google Scholar 

  2. Fields S, Song OK (1989) A novel genetic system to detect protein-protein interactions. Nature 340:245–246

    Article  PubMed  CAS  Google Scholar 

  3. Allen JB, Walberg MW, Edwards MC, Elledge SJ (1995) Finding prospective partners in the library: the two hybrid system and phage display find a match. Trends Biochem Sci 20:511–516

    Article  PubMed  CAS  Google Scholar 

  4. Boeke J, Brachmann RK (1997) Tag games in yeast: the two-hybrid system and beyond. Curr Biol 8:561–568

    Google Scholar 

  5. Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A 98:4569–4574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Ito T, Chiba T, Yoshida M (2001) Exploring the protein interactome using comprehensive two-hybrid projects. Trends Biotechnol 19:S23–S27

    Article  PubMed  CAS  Google Scholar 

  7. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623–627

    Article  PubMed  CAS  Google Scholar 

  8. Hazbun TR, Fields S (2001) Networking proteins in yeast. Proc Natl Acad Sci U S A 98:4277–4278

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Jeong H, Mason SP, Barabasi AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411:41–42

    Article  PubMed  CAS  Google Scholar 

  10. Aronheim A, Zandi E, Hennemann H, Elledge S, Karin M (1997) Isolation of an AP-1 repressor by a novel method for detecting protein-protein interactions. Mol Cell Biol 17:3094–3102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Broder YC, Katz S, Aronheim A (1998) The Ras recruitment system, a novel approach to the study of protein-protein interactions. Curr Biol 8:1121–1124

    Article  CAS  PubMed  Google Scholar 

  12. Aronheim A, Engelberg D, Li N, al-Alawi N, Schlessinger J, Karin M (1994) Membrane targeting of the nucleotide exchange factor Sos is sufficient for activating the Ras signaling pathway. Cell 78:949–961

    Article  CAS  PubMed  Google Scholar 

  13. Hancock JF, Magee AI, Childs J, Marshall CJ (1989) All ras proteins are polyisoprenylated but only some are palmitoylated. Cell 57:1167–1177

    Article  PubMed  CAS  Google Scholar 

  14. Leevers SJ, Paterson HF, Marshall CJ (1994) Requirement for ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature 369:411–414

    Article  PubMed  CAS  Google Scholar 

  15. Klippel A, Reinhard C, kavanaugh M, Apell G, Escobedo MA, Williams LT (1996) Membrane localization of phosphatidylinositol 3-kinase is sufficient to activate multiple signal-transducing kinase pathways. Mol Cell Biol 16:4117–4127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Huang DCS, Marshall CJ, Hancock JF (1993) Plasma membrane targeted ras GTPase-activating protein is a potent suppressor of p21ras function. Mol Cell Biol 13:2420–2431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Buday L, Downward J (1993) Epidermal growth factor regulates p21ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor. Cell 73:611–620

    Article  PubMed  CAS  Google Scholar 

  18. Quilliam LA, Huff SY, Rabun KM, Wei W, Park W, Broek D, DEr CJ (1994) Membrane-targeting potentiates guanine nucleotide exchange factor CDC25 and SOS1 activation of Ras transforming activity. Proc Natl Acad Sci U S A 91:8512–8516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Quilliam LA, Khosravi R, Huff SY, Der CJ (1995) Guanine nucleotide exchange factors: activators of the ras superfamily of proteins. BioEssays 17:395–404

    Article  PubMed  CAS  Google Scholar 

  20. Petitjean A, Higler F, Tatchell K (1990) Comparison of thermosensitive alleles of the CDC25 gene involved in the cAMP metabolism of Saccharomyces cerevisiae. Genetics 124:797–806

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Yu X, Wu LC, Bowcock AM, Aronheim A, Baer R (1998) The C-terminal (BRCT) domains of BRCA1 interact in vivo with CtIP, a protein implicated in the CtBP pathway of transcriptional repression. J Biol Chem 273:25388–25392

    Article  PubMed  CAS  Google Scholar 

  22. Andreev J, Simon JP, Sabatini DD, Kam J, Plowman G, Randazzo PA, Schlessinger J (1999) Identification of a new Pyk2 target protein with Arf-GAP activity. Mol Cell Biol 19:2338–2350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Ko L, Cardona GR, Chin W (2000) Thyroid hormone receptor-binding protein, an LXXLL motif-containing protein, functions as a general coactivator. Proc Natl Acad Sci U S A 97:6212–6217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Yamanaka T, Ohta T, Takahashi M, Meshi T, Schmidt R, Dean C, Naito S, Ishikawa M (2000) TOM1, an Arabidopsis gene required for efficient multiplication of a tobamovirus, encodes a putative transmembrane protein. Proc Natl Acad Sci U S A 97:10107–10112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Takemaru K, Yamaguchi S, Lee YS, Zhang Y, Carthew RW, Moon RT (2003) Chibby, a nuclear beta-catenin-associated antagonist of the Wnt/Wingless pathway. Nature 422:905–909

    Article  PubMed  CAS  Google Scholar 

  26. Nateri AS, Riera-Sans L, Da Costa C, Behrens A (2004) The ubiquitin ligase SCFFbw7 antagonizes apoptotic JNK signaling. Science 303:1374–1378

    Article  PubMed  CAS  Google Scholar 

  27. Aronheim A, Broder YC, Cohen A, Fritsch A, Belisle B, Abo A (1998) Chp, a homologue of the GTPase Cdc42, activates the JNK pathway and is implicated in reorganizing the actin cytoskeleton. Curr Biol 8:1125–1128

    Article  PubMed  CAS  Google Scholar 

  28. Maroun M, Aronheim A (1997) A novel in vivo assay for the analysis of protein-protein interaction. Nucleic Acids Res 27:e4

    Article  Google Scholar 

  29. Hubsman M, Yudkovsky G, Aronheim A (2001) A novel approach for the identification of protein-protein interaction with integral membrane proteins. Nucleic Acids Res 29:e18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Frankel P, Aronheim A, Kavanagh E, Balda MS, Matter K, Marshall CJ (2005) RalA interacts with ZONAB in a cell density-dependent manner and regulates its transcriptional activity. EMBO J 24:54–62

    Article  PubMed  CAS  Google Scholar 

  31. Robzyk K, Kassir Y (1992) A simple and highly efficient procedure for rescuing autonomous plasmids from yeast. Nuc Acids Res 20:3790

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Drs. Broder Y., Katz S., Maroun M., Cohen A., and all Aronheim’s lab alumni for the continued development of the protein recruitment systems over the years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ami Aronheim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Aronheim, A. (2018). The Ras Recruitment System (RRS) for the Identification and Characterization of Protein–Protein Interactions. In: Oñate-Sánchez, L. (eds) Two-Hybrid Systems. Methods in Molecular Biology, vol 1794. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7871-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7871-7_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7870-0

  • Online ISBN: 978-1-4939-7871-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics