Advertisement

Novel Methods for Family-Based Genetic Studies

Protocol
  • 1.7k Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 1793)

Abstract

The recent development of microarray and sequencing technology allows identification of disease susceptibility genes. Although the genome-wide association studies (GWAS) have successfully identified many genetic markers related to human diseases, the traditional statistical methods are not powerful to detect rare genetic markers. The rare genetic markers are usually grouped together and tested at the set level. One of such methods is the sequence kernel association test (SKAT), which has been commonly used in the rare genetic marker analysis. In recent publications, SKAT has been extended to be applicable for family-based rare variant analysis. Here, I present three published statistical approaches for family-based rare variant analysis for: 1. continuous traits, 2. binary traits, and 3. multiple correlated traits.

Key words

Statistical analysis Sequence kernel association test Mixed model Rare genetic markers Gene-based analysis 

References

  1. 1.
    Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends in Genetics: TIG 24(3):133–141.  https://doi.org/10.1016/j.tig.2007.12.007 CrossRefPubMedGoogle Scholar
  2. 2.
    Metzker ML (2010) Sequencing technologies - the next generation. Nat Rev Genet 11(1):31–46.  https://doi.org/10.1038/nrg2626 CrossRefPubMedGoogle Scholar
  3. 3.
    Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447(7145):661–678.  https://doi.org/10.1038/nature05911 CrossRefGoogle Scholar
  4. 4.
    Hunter DJ, Kraft P, Jacobs KB et al (2007) A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet 39(7):870–874.  https://doi.org/10.1038/ng2075 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Yeager M, Orr N, Hayes RB et al (2007) Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet 39(5):645–649.  https://doi.org/10.1038/ng2022 CrossRefPubMedGoogle Scholar
  6. 6.
    Hindorff LA, Sethupathy P, Junkins HA et al (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 106(23):9362–9367.  https://doi.org/10.1073/pnas.0903103106 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Manolio TA, Brooks LD, Collins FS (2008) A HapMap harvest of insights into the genetics of common disease. J Clin Invest 118(5):1590–1605.  https://doi.org/10.1172/JCI34772 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Schork NJ, Murray SS, Frazer KA et al (2009) Common vs. rare allele hypotheses for complex diseases. Curr Opin Genet Dev 19(3):212–219.  https://doi.org/10.1016/j.gde.2009.04.010 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Li B, Leal SM (2008) Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am J Hum Genet 83(3):311–321.  https://doi.org/10.1016/j.ajhg.2008.06.024 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Liu JZ, McRae AF, Nyholt DR et al (2010) A versatile gene-based test for genome-wide association studies. Am J Hum Genet 87(1):139–145.  https://doi.org/10.1016/j.ajhg.2010.06.009 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wu MC, Kraft P, Epstein MP et al (2010) Powerful SNP-set analysis for case-control genome-wide association studies. Am J Hum Genet 86(6):929–942.  https://doi.org/10.1016/j.ajhg.2010.05.002 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Neale BM, Sham PC (2004) The future of association studies: gene-based analysis and replication. Am J Hum Genet 75(3):353–362.  https://doi.org/10.1086/423901 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Han F, Pan W (2010) A data-adaptive sum test for disease association with multiple common or rare variants. Hum Hered 70(1):42–54.  https://doi.org/10.1159/000288704 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hoffmann TJ, Marini NJ, Witte JS (2010) Comprehensive approach to analyzing rare genetic variants. PLoS One 5(11):e13584.  https://doi.org/10.1371/journal.pone.0013584 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lin WY, Lou XY, Gao G et al (2014) Rare variant association testing by adaptive combination of P-values. PLoS One 9(1):e85728.  https://doi.org/10.1371/journal.pone.0085728 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lin WY, Yi N, Lou XY et al (2013) Haplotype kernel association test as a powerful method to identify chromosomal regions harboring uncommon causal variants. Genet Epidemiol 37(6):560–570.  https://doi.org/10.1002/gepi.21740 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lin WY, Yi N, Zhi D et al (2012) Haplotype-based methods for detecting uncommon causal variants with common SNPs. Genet Epidemiol 36(6):572–582.  https://doi.org/10.1002/gepi.21650 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Madsen BE, Browning SR (2009) A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet 5(2):e1000384.  https://doi.org/10.1371/journal.pgen.1000384 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Morgenthaler S, Thilly WG (2007) A strategy to discover genes that carry multi-allelic or mono-allelic risk for common diseases: a cohort allelic sums test (CAST). Mutat Res 615(1–2):28–56.  https://doi.org/10.1016/j.mrfmmm.2006.09.003 CrossRefPubMedGoogle Scholar
  20. 20.
    Zawistowski M, Gopalakrishnan S, Ding J et al (2010) Extending rare-variant testing strategies: analysis of noncoding sequence and imputed genotypes. Am J Hum Genet 87(5):604–617.  https://doi.org/10.1016/j.ajhg.2010.10.012 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yi N, Liu N, Zhi D et al (2011) Hierarchical generalized linear models for multiple groups of rare and common variants: jointly estimating group and individual-variant effects. PLoS Genet 7(12):e1002382.  https://doi.org/10.1371/journal.pgen.1002382 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wu MC, Lee S, Cai T et al (2011) Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet 89(1):82–93.  https://doi.org/10.1016/j.ajhg.2011.05.029 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Yan Q, Tiwari HK, Yi N et al (2014) Kernel-machine testing coupled with a rank-truncation method for genetic pathway analysis. Genet Epidemiol 38(5):447–456.  https://doi.org/10.1002/gepi.21813 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Falk CT, Rubinstein P (1987) Haplotype relative risks: an easy reliable way to construct a proper control sample for risk calculations. Ann Hum Genet 51(Pt 3):227–233CrossRefPubMedGoogle Scholar
  25. 25.
    Ott J (1989) Statistical properties of the haplotype relative risk. Genet Epidemiol 6(1):127–130.  https://doi.org/10.1002/gepi.1370060124 CrossRefPubMedGoogle Scholar
  26. 26.
    Spielman RS, McGinnis RE, Ewens WJ (1993) Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 52(3):506–516PubMedPubMedCentralGoogle Scholar
  27. 27.
    Terwilliger JD, Ott J (1992) A haplotype-based 'haplotype relative risk' approach to detecting allelic associations. Hum Hered 42(6):337–346CrossRefPubMedGoogle Scholar
  28. 28.
    Almasy L, Blangero J (1998) Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 62(5):1198–1211.  https://doi.org/10.1086/301844 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Rabinowitz D, Laird N (2000) A unified approach to adjusting association tests for population admixture with arbitrary pedigree structure and arbitrary missing marker information. Human heredity 50(4):211–223. doi:22918CrossRefPubMedGoogle Scholar
  30. 30.
    Yu J, Pressoir G, Briggs WH et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38(2):203–208.  https://doi.org/10.1038/ng1702 CrossRefPubMedGoogle Scholar
  31. 31.
    Kang HM, Sul JH, Service SK et al (2010) Variance component model to account for sample structure in genome-wide association studies. Nat Genet 42(4):348–354.  https://doi.org/10.1038/ng.548 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Zhang Z, Ersoz E, Lai CQ et al (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42(4):355–360.  https://doi.org/10.1038/ng.546 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Chen H, Meigs JB, Dupuis J (2013) Sequence kernel association test for quantitative traits in family samples. Genet Epidemiol 37(2):196–204.  https://doi.org/10.1002/gepi.21703 CrossRefPubMedGoogle Scholar
  34. 34.
    Schifano ED, Epstein MP, Bielak LF et al (2012) SNP set association analysis for familial data. Genet Epidemiol 36:797–810.  https://doi.org/10.1002/gepi.21676 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Oualkacha K, Dastani Z, Li R et al (2013) Adjusted sequence kernel association test for rare variants controlling for cryptic and family relatedness. Genet Epidemiol 37(4):366–376.  https://doi.org/10.1002/gepi.21725 CrossRefPubMedGoogle Scholar
  36. 36.
    Yuan KH, Bentler PM (2010) Two simple approximations to the distributions of quadratic forms. Br J Math Stat Psychol 63(Pt 2):273–291.  https://doi.org/10.1348/000711009X449771 CrossRefPubMedGoogle Scholar
  37. 37.
    Davies R (1980) The distribution of a linear combination of chi-square random variables. J R Stat Soc Ser C Appl Stat 29:323–333Google Scholar
  38. 38.
    Breslow NE, Clayton DG (1993) Approximate inference in generalized linear mixed models. J Amer Statist Assoc 88:9–25Google Scholar
  39. 39.
    Venables WN, Ripley BD, Venables WN (2002) Modern applied statistics with S. Statistics and computing, 4th edn. Springer, New YorkCrossRefGoogle Scholar
  40. 40.
    Yan Q, Tiwari HK, Yi N et al (2015) A sequence kernel association test for dichotomous traits in family samples under a generalized linear mixed model. Hum Hered 79(2):60–68.  https://doi.org/10.1159/000375409 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Nelder JA, Mead R (1965) A simplex-method for function minimization. Comput J 7(4):308–313CrossRefGoogle Scholar
  42. 42.
    Broyden CG (1969) A new double-rank minimisation algorithm. Preliminary report. Not Am Math Soc 16(4):670Google Scholar
  43. 43.
    Fletcher R (1970) A new approach to variable metric algorithms. Comput J 13(3):317.  https://doi.org/10.1093/comjnl/13.3.317 CrossRefGoogle Scholar
  44. 44.
    Goldfarb D (1970) A family of variable-metric methods derived by variational means. Math Comput 24(109):23.  https://doi.org/10.2307/2004873 CrossRefGoogle Scholar
  45. 45.
    Shanno DF (1970) Conditioning of quasi-newton methods for function minimization. Math Comput 24(111):647.  https://doi.org/10.2307/2004840 CrossRefGoogle Scholar
  46. 46.
    Yan Q, Weeks DE, Celedon JC et al (2015) Associating multivariate quantitative phenotypes with genetic variants in family samples with a novel kernel machine regression method. Genetics 201(4):1329–1339.  https://doi.org/10.1534/genetics.115.178590 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Pulmonary Medicine, Allergy and Immunology; Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMCUniversity of PittsburghPittsburghUSA

Personalised recommendations