Advertisement

Translating Human Genetics into Novel Drug Targets

  • Karol EstradaEmail author
  • Alzheimer’s Disease Neuroimaging Initiative
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1793)

Abstract

The most important promise of the human genome sequencing project is the identification of the genetic cause of devastating human diseases and the subsequent deliver of novel drug therapies to treat these diseases with high unmet medical need. In the last 10 years we have successfully identified hundreds of genetic loci associated with many traits and diseases. The translation of these findings into novel therapies is not straightforward and poses challenges that are usually overlooked in traditional gene mapping. This chapter describes some of the most common challenges and opportunities to use human genetics to identify and validate novel drug targets.

Key words

Human genetics Drug targets Translation genomics 

Notes

Acknowledgements

Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd. and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (http://www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

References

  1. 1.
    Nelson MR, Tipney H, Painter JL et al (2015) The support of human genetic evidence for approved drug indications. Nat Genet 47(8):856–860.  https://doi.org/10.1038/ng.3314 CrossRefPubMedGoogle Scholar
  2. 2.
    Welter D, MacArthur J, Morales J et al (2014) The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res 42(Database issue):D1001–D1006.  https://doi.org/10.1093/nar/gkt1229 CrossRefPubMedGoogle Scholar
  3. 3.
    Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273(5281):1516–1517CrossRefPubMedGoogle Scholar
  4. 4.
    International HapMap Consortium (2003) The international hapmap project. Nature 426(6968):789–796.  https://doi.org/10.1038/nature02168 CrossRefGoogle Scholar
  5. 5.
    Goldstein DB (2009) Common genetic variation and human traits. N Engl J Med 360(17):1696–1698.  https://doi.org/10.1056/NEJMp0806284 CrossRefPubMedGoogle Scholar
  6. 6.
    Estrada K, Styrkarsdottir U, Evangelou E et al (2012) Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet 44(5):491–501.  https://doi.org/10.1038/ng.2249 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lango Allen H, Estrada K, Lettre G et al (2010) Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467(7317):832–838.  https://doi.org/10.1038/nature09410 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Schizophrenia Working Group of the Psychiatric Genomics Consortium (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511(7510):421–427.  https://doi.org/10.1038/nature13595 CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Gabriel SB, Schaffner SF, Nguyen H et al (2002) The structure of haplotype blocks in the human genome. Science 296(5576):2225–2229.  https://doi.org/10.1126/science.1069424 CrossRefPubMedGoogle Scholar
  10. 10.
    Cortes A, Brown MA (2011) Promise and pitfalls of the Immunochip. Arthritis Res Ther 13(1):101.  https://doi.org/10.1186/ar3204 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Naitza S, Porcu E, Steri M et al (2012) A genome-wide association scan on the levels of markers of inflammation in Sardinians reveals associations that underpin its complex regulation. PLoS Genet 8(1):e1002480.  https://doi.org/10.1371/journal.pgen.1002480 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Sudmant PH, Rausch T, Gardner EJ et al (2015) An integrated map of structural variation in 2,504 human genomes. Nature 526(7571):75–81.  https://doi.org/10.1038/nature15394 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Yang J, Lee SH, Goddard ME et al (2013) Genome-wide complex trait analysis (GCTA): methods, data analyses, and interpretations. Methods Mol Biol 1019:215–236.  https://doi.org/10.1007/978-1-62703-447-0_9 CrossRefPubMedGoogle Scholar
  14. 14.
    Maller JB, McVean G, Wellcome Trust Case Control Consortium et al (2012) Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat Genet 44(12):1294–1301.  https://doi.org/10.1038/ng.2435 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Benner C, Spencer CC, Havulinna AS et al (2016) FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics 32(10):1493–1501.  https://doi.org/10.1093/bioinformatics/btw018 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Li YI, van de Geijn B, Raj A et al (2016) RNA splicing is a primary link between genetic variation and disease. Science 352(6285):600–604.  https://doi.org/10.1126/science.aad9417 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    GTEx Consortium (2015) Human genomics. The genotype-tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348 (6235):648–660. doi: https://doi.org/10.1126/science.1262110
  18. 18.
    Wallace C, Rotival M, Cooper JD et al (2012) Statistical colocalization of monocyte gene expression and genetic risk variants for type 1 diabetes. Hum Mol Genet 21(12):2815–2824.  https://doi.org/10.1093/hmg/dds098 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hormozdiari F, Bunt MVD, Segre AV et al (2016) Colocalization of GWAS and eQTL signals detects target genes. Am J Hum Genet 99(6):1245–1260.  https://doi.org/10.1101/065037 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74.  https://doi.org/10.1038/nature11247 CrossRefGoogle Scholar
  21. 21.
    Zheng HF, Forgetta V, Hsu YH et al (2015) Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature 526(7571):112–117.  https://doi.org/10.1038/nature14878 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Plenge RM, Scolnick EM, Altshuler D (2013) Validating therapeutic targets through human genetics. Nat Rev Drug Discov 12(8):581–594.  https://doi.org/10.1038/nrd4051 CrossRefPubMedGoogle Scholar
  23. 23.
    Cohen J, Pertsemlidis A, Kotowski IK et al (2005) Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet 37(2):161–165.  https://doi.org/10.1038/ng1509 CrossRefPubMedGoogle Scholar
  24. 24.
    Giugliano RP, Desai NR, Kohli P et al (2012) Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 in combination with a statin in patients with hypercholesterolaemia (LAPLACE-TIMI 57): a randomised, placebo-controlled, dose-ranging, phase 2 study. Lancet 380(9858):2007–2017.  https://doi.org/10.1016/S0140-6736(12)61770-X CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Raal F, Scott R, Somaratne R et al (2012) Low-density lipoprotein cholesterol-lowering effects of AMG 145, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease in patients with heterozygous familial hypercholesterolemia: the reduction of LDL-C with PCSK9 inhibition in heterozygous familial hypercholesterolemia disorder (RUTHERFORD) randomized trial. Circulation 126(20):2408–2417.  https://doi.org/10.1161/CIRCULATIONAHA.112.144055 CrossRefPubMedGoogle Scholar
  26. 26.
    Sevigny J, Chiao P, Bussiere T et al (2016) The antibody aducanumab reduces Abeta plaques in Alzheimer's disease. Nature 537(7618):50–56.  https://doi.org/10.1038/nature19323 CrossRefPubMedGoogle Scholar
  27. 27.
    Ramirez A, van der Flier WM, Herold C et al (2014) SUCLG2 identified as both a determinator of CSF Abeta1-42 levels and an attenuator of cognitive decline in Alzheimer's disease. Hum Mol Genet 23(24):6644–6658.  https://doi.org/10.1093/hmg/ddu372 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lambert JC, Ibrahim-Verbaas CA, Harold D et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat Genet 45(12):1452–1458.  https://doi.org/10.1038/ng.2802 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lek M, Karczewski KJ, Minikel EV et al (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536(7616):285–291.  https://doi.org/10.1038/nature19057 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Samocha KE, Robinson EB, Sanders SJ et al (2014) A framework for the interpretation of de novo mutation in human disease. Nat Genet 46(9):944–950.  https://doi.org/10.1038/ng.3050 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Hurle MR, Nelson MR, Agarwal P et al (2016) Trial watch: impact of genetically supported target selection on R&D productivity. Nat Rev Drug Discov 15(9):596–597.  https://doi.org/10.1038/nrd.2016.164 CrossRefPubMedGoogle Scholar
  32. 32.
    Ramanan VK, Risacher SL, Nho K et al (2014) APOE and BCHE as modulators of cerebral amyloid deposition: a florbetapir PET genome-wide association study. Mol Psychiatry 19(3):351–357.  https://doi.org/10.1038/mp.2013.19 CrossRefPubMedGoogle Scholar
  33. 33.
    Loh PR, Danecek P, Palamara PF et al (2016) Reference-based phasing using the haplotype reference consortium panel. Nat Genet 48(11):1443–1448.  https://doi.org/10.1038/ng.3679 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Karol Estrada
    • 1
    Email author
  • Alzheimer’s Disease Neuroimaging Initiative
  1. 1.Translational Genome Sciences, BiogenCambridgeUSA

Personalised recommendations