Advertisement

Multivariate Methods for Meta-Analysis of Genetic Association Studies

  • Niki L. Dimou
  • Katerina G. Pantavou
  • Georgia G. Braliou
  • Pantelis G. BagosEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1793)

Abstract

Multivariate meta-analysis of genetic association studies and genome-wide association studies has received a remarkable attention as it improves the precision of the analysis. Here, we review, summarize and present in a unified framework methods for multivariate meta-analysis of genetic association studies and genome-wide association studies. Starting with the statistical methods used for robust analysis and genetic model selection, we present in brief univariate methods for meta-analysis and we then scrutinize multivariate methodologies. Multivariate models of meta-analysis for a single gene-disease association studies, including models for haplotype association studies, multiple linked polymorphisms and multiple outcomes are discussed. The popular Mendelian randomization approach and special cases of meta-analysis addressing issues such as the assumption of the mode of inheritance, deviation from Hardy–Weinberg Equilibrium and gene-environment interactions are also presented. All available methods are enriched with practical applications and methodologies that could be developed in the future are discussed. Links for all available software implementing multivariate meta-analysis methods are also provided.

Key words

Meta-analysis Multivariate methodology Genetic association studies 

Notes

Acknowledgments

Niki Dimou and Katerina Pantavou were supported by a scholarship from the ΙΚΥ Scholarship Programs in the context of the action “Strengthening Post-Doctoral Research” of the Human Resources Development Program, Education and Lifelong Learning, co-financed by the European Social Fund – ESF and the Greek government.

References

  1. 1.
    Burton PR, Tobin MD, Hopper JL (2005) Key concepts in genetic epidemiology. Lancet 366(9489):941–951.  https://doi.org/10.1016/S0140-6736(05)67322-9 CrossRefPubMedGoogle Scholar
  2. 2.
    Cordell HJ, Clayton DG (2005) Genetic association studies. Lancet 366(9491):1121–1131.  https://doi.org/10.1016/S0140-6736(05)67424-7 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Rao DC (2008) An overview of the genetic dissection of complex traits. Adv Genet 60:3–34.  https://doi.org/10.1016/S0065-2660(07)00401-4 CrossRefPubMedGoogle Scholar
  4. 4.
    Klein RJ, Zeiss C, Chew EY et al (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308(5720):385–389.  https://doi.org/10.1126/science.1109557 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Manolio TA (2010) Genomewide association studies and assessment of the risk of disease. N Engl J Med 363(2):166–176.  https://doi.org/10.1056/NEJMra0905980 CrossRefPubMedGoogle Scholar
  6. 6.
    MacArthrur J, Bowler E, Cerezo M et al (2017) The new NHGRI-EBI catalog of published genome-wide association studies. Nucleic Acids Res 45(D1):D896–D901.  https://doi.org/10.1093/nar/gkw1133 CrossRefGoogle Scholar
  7. 7.
    Mendel S, McCarthy A, Barnett JP et al (2008) The Escherichia coli TatABC system and a Bacillus subtilis TatAC-type system recognise three distinct targeting determinants in twin-arginine signal peptides. J Mol Biol 375(3):661–672.  https://doi.org/10.1016/j.jmb.2007.09.087 CrossRefPubMedGoogle Scholar
  8. 8.
    Teo YY (2008) Common statistical issues in genome-wide association studies: a review on power, data quality control, genotype calling and population structure. Curr Opin Lipidol 19(2):133–143.  https://doi.org/10.1097/MOL.0b013e3282f5dd77 CrossRefPubMedGoogle Scholar
  9. 9.
    Ziegler A, Konig IR, Thompson JR (2008) Biostatistical aspects of genome-wide association studies. Biom J 50(1):8–28.  https://doi.org/10.1002/bimj.200710398 CrossRefPubMedGoogle Scholar
  10. 10.
    Hirschhorn JN, Lohmueller K, Byrne E et al (2002) A comprehensive review of genetic association studies. Genet Med 4(2):45–61.  https://doi.org/10.1097/00125817-200203000-00002 CrossRefPubMedGoogle Scholar
  11. 11.
    Becker KG, Barnes KC, Bright TJ et al (2004) The genetic association database. Nat Genet 36(5):431–432.  https://doi.org/10.1038/ng0504-431 CrossRefPubMedGoogle Scholar
  12. 12.
    Normand SL (1999) Meta-analysis: formulating, evaluating, combining, and reporting. Stat Med 18(3):321–359CrossRefPubMedGoogle Scholar
  13. 13.
    Petiti DB (1994) Meta-analysis decision analysis and cost-effectiveness analysis. In: Monographs in epidemiology and biostatistics, vol 24. Oxford University Press, OxfordGoogle Scholar
  14. 14.
    Trikalinos TA, Salanti G, Zintzaras E et al (2008) Meta-analysis methods. Adv Genet 60:311–334.  https://doi.org/10.1016/S0065-2660(07)00413-0 CrossRefPubMedGoogle Scholar
  15. 15.
    Glass G (1976) Primary, secondary and meta-analysis of research. Educ Res 5:3–8CrossRefGoogle Scholar
  16. 16.
    Greenland S (1998) Meta-analysis. In: Rothman KJ, Greenland S (eds) Modern epidemiology. Lippincott Williams & Wilkins, Philadelphia, pp 643–673Google Scholar
  17. 17.
    Chalmers TC, Berrier J, Sacks HS et al (1987) Meta-analysis of clinical trials as a scientific discipline. II: replicate variability and comparison of studies that agree and disagree. Stat Med 6(7):733–744CrossRefPubMedGoogle Scholar
  18. 18.
    Sacks HS, Berrier J, Reitman D et al (1987) Meta-analyses of randomized controlled trials. N Engl J Med 316(8):450–455.  https://doi.org/10.1056/NEJM198702193160806 CrossRefPubMedGoogle Scholar
  19. 19.
    Stroup DF, Berlin JA, Morton SC et al (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of observational studies in epidemiology (MOOSE) group. JAMA 283(15):2008–2012CrossRefPubMedGoogle Scholar
  20. 20.
    Nikolopoulos GK, Bagos PG, Bonovas S (2011) Developing the evidence base for cancer chemoprevention: use of meta-analysis. Curr Drug Targets 12(13):1989–1997. doi:BSP/CDT/E-Pub/00218CrossRefPubMedGoogle Scholar
  21. 21.
    Thakkinstian A, McElduff P, D'Este C et al (2005) A method for meta-analysis of molecular association studies. Stat Med 24(9):1291–1306.  https://doi.org/10.1002/sim.2010 CrossRefPubMedGoogle Scholar
  22. 22.
    Minelli C, Thompson JR, Abrams KR et al (2005) The choice of a genetic model in the meta-analysis of molecular association studies. Int J Epidemiol 34(6):1319–1328.  https://doi.org/10.1093/ije/dyi169 CrossRefPubMedGoogle Scholar
  23. 23.
    Bagos PG, Nikolopoulos GK (2007) A method for meta-analysis of case–control genetic association studies using logistic regression. Stat Appl Genet Mol Biol 6:Article17.  https://doi.org/10.2202/1544-6115.1281 CrossRefPubMedGoogle Scholar
  24. 24.
    Evangelou E, Ioannidis JP (2013) Meta-analysis methods for genome-wide association studies and beyond. Nat Rev Genet 14(6):379–389.  https://doi.org/10.1038/nrg34721 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Evangelou E, Maraganore DM, Ioannidis JP (2007) Meta-analysis in genome-wide association datasets: strategies and application in Parkinson disease. PLoS One 2(2):e196.  https://doi.org/10.1371/journal.pone.0000196 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Bagos PG (2008) A unification of multivariate methods for meta-analysis of genetic association studies. Stat Appl Genet Mol Biol 7(1):Article31.  https://doi.org/10.2202/1544-6115.1408 CrossRefPubMedGoogle Scholar
  27. 27.
    Minelli C, Thompson JR, Abrams KR et al (2005) Bayesian implementation of a genetic model-free approach to the meta-analysis of genetic association studies. Stat Med 24(24):3845–3861.  https://doi.org/10.1002/sim.2393 CrossRefPubMedGoogle Scholar
  28. 28.
    Bagos PG (2011) Meta-analysis of haplotype-association studies: comparison of methods and empirical evaluation of the literature. BMC Genet 12:8.  https://doi.org/10.1186/1471-2156-12-8 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Bagos PG, Liakopoulos TD (2010) A multipoint method for meta-analysis of genetic association studies. Genet Epidemiol 34(7):702–715.  https://doi.org/10.1002/gepi.20531 CrossRefPubMedGoogle Scholar
  30. 30.
    Minelli C, Thompson JR, Tobin MD et al (2004) An integrated approach to the meta-analysis of genetic association studies using Mendelian randomization. Am J Epidemiol 160(5):445–452.  https://doi.org/10.1093/aje/kwh228 CrossRefPubMedGoogle Scholar
  31. 31.
    Thompson JR, Minelli C, Abrams KR et al (2005) Meta-analysis of genetic studies using Mendelian randomization—a multivariate approach. Stat Med 24(14):2241–2254.  https://doi.org/10.1002/sim.2100 CrossRefPubMedGoogle Scholar
  32. 32.
    van Houwelingen HC, Arends LR, Stijnen T (2002) Advanced methods in meta-analysis: multivariate approach and meta-regression. Stat Med 21(4):589–624.  https://doi.org/10.1002/sim.1040 CrossRefPubMedGoogle Scholar
  33. 33.
    Riley RD, Abrams KR, Lambert PC et al (2007) An evaluation of bivariate random-effects meta-analysis for the joint synthesis of two correlated outcomes. Stat Med 26(1):78–97.  https://doi.org/10.1002/sim.2524 CrossRefPubMedGoogle Scholar
  34. 34.
    Riley RD, Abrams KR, Sutton AJ et al (2007) Bivariate random-effects meta-analysis and the estimation of between-study correlation. BMC Med Res Methodol 7:3.  https://doi.org/10.1186/1471-2288-7-3 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Balding DJ (2006) A tutorial on statistical methods for population association studies. Nat Rev Genet 7(10):781–791.  https://doi.org/10.1038/nrg1916 CrossRefPubMedGoogle Scholar
  36. 36.
    Langefeld CD, Fingerlin TE (2007) Association methods in human genetics. Methods Mol Biol 404:431–460.  https://doi.org/10.1007/978-1-59745-530-5_21 CrossRefPubMedGoogle Scholar
  37. 37.
    Armitage P (1955) Tests for linear trends in proportions and frequencies. Biometrics 11(3):375–386CrossRefGoogle Scholar
  38. 38.
    Cochran WG (1954) Some methods for strengthening the common chi-squared tests. Biometrics 10(4):417–451CrossRefGoogle Scholar
  39. 39.
    Gastwirth JL (1985) The use of maximin efficiency robust tests in combining contingency tables and survival analysis. J Am Stat Assoc 80(390):380–384CrossRefGoogle Scholar
  40. 40.
    Freidlin B, Podgor MJ, Gastwirth JL (1999) Efficiency robust tests for survival or ordered categorical data. Biometrics 55(3):883–886CrossRefPubMedGoogle Scholar
  41. 41.
    Freidlin B, Zheng G, Li Z et al (2002) Trend tests for case–control studies of genetic markers: power, sample size and robustness. Hum Hered 53(3):146–152. doi:64976CrossRefPubMedGoogle Scholar
  42. 42.
    Wittke-Thompson JK, Pluzhnikov A, Cox NJ (2005) Rational inferences about departures from Hardy–Weinberg equilibrium. Am J Hum Genet 76(6):967–986.  https://doi.org/10.1086/430507 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Zheng G, Ng HK (2008) Genetic model selection in two-phase analysis for case–control association studies. Biostatistics 9(3):391–399.  https://doi.org/10.1093/biostatistics/kxm039 CrossRefPubMedGoogle Scholar
  44. 44.
    Song K, Elston RC (2006) A powerful method of combining measures of association and Hardy–Weinberg disequilibrium for fine-mapping in case–control studies. Stat Med 25(1):105–126.  https://doi.org/10.1002/sim.2350 CrossRefPubMedGoogle Scholar
  45. 45.
    Joo J, Kwak M, Zheng G (2010) Improving power for testing genetic association in case–control studies by reducing the alternative space. Biometrics 66(1):266–276.  https://doi.org/10.1111/j.1541-0420.2009.01241.x CrossRefPubMedGoogle Scholar
  46. 46.
    Burton PR, Clayton DG, Cardon LR et al (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447(7145):661–678CrossRefGoogle Scholar
  47. 47.
    Joo J, Kwak M, Ahn K et al (2009) A robust genome-wide scan statistic of the Wellcome trust case–control consortium. Biometrics 65(4):1115–1122.  https://doi.org/10.1111/j.1541-0420.2009.01185.x CrossRefPubMedGoogle Scholar
  48. 48.
    Dimou NL, Tsirigos KD, Elofsson A et al (2017) GWAR: robust analysis and meta-analysis of genome-wide association studies. Bioinformatics 33(10):1521–1527.  https://doi.org/10.1093/bioinformatics/btx008 CrossRefPubMedGoogle Scholar
  49. 49.
    Lettre G, Lange C, Hirschhorn JN (2007) Genetic model testing and statistical power in population-based association studies of quantitative traits. Genet Epidemiol 31(4):358–362.  https://doi.org/10.1002/gepi.20217 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    So HC, Sham PC (2011) Robust association tests under different genetic models, allowing for binary or quantitative traits and covariates. Behav Genet 41(5):768–775.  https://doi.org/10.1007/s10519-011-9450-9 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Hothorn LA, Hothorn T (2009) Order-restricted scores test for the evaluation of population-based case–control studies when the genetic model is unknown. Biom J 51(4):659–669.  https://doi.org/10.1002/bimj.200800203 CrossRefPubMedGoogle Scholar
  52. 52.
    Gonzalez JR, Armengol L, Sole X et al (2007) SNPassoc: an R package to perform whole genome association studies. Bioinformatics 23(5):644–645.  https://doi.org/10.1093/bioinformatics/btm025 CrossRefPubMedGoogle Scholar
  53. 53.
    Zang Y, Fung WK, Zheng G (2010) Simple algorithms to calculate asymptotic null distribution for robust tests in case–control genetic association studies in R. J Stat Softw 33:1–24CrossRefGoogle Scholar
  54. 54.
    DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188CrossRefGoogle Scholar
  55. 55.
    Thompson SG, Sharp SJ (1999) Explaining heterogeneity in meta-analysis: a comparison of methods. Stat Med 18(20):2693–2708CrossRefPubMedGoogle Scholar
  56. 56.
    Warn DE, Thompson SG, Spiegelhalter DJ (2002) Bayesian random effects meta-analysis of trials with binary outcomes: methods for the absolute risk difference and relative risk scales. Stat Med 21(11):1601–1623.  https://doi.org/10.1002/sim.1189 CrossRefPubMedGoogle Scholar
  57. 57.
    Smith TC, Spiegelhalter DJ, Thomas A (1995) Bayesian approaches to random-effects meta-analysis: a comparative study. Stat Med 14(24):2685–2699CrossRefPubMedGoogle Scholar
  58. 58.
    Sutton AJ, Abrams KR (2001) Bayesian methods in meta-analysis and evidence synthesis. Stat Methods Med Res 10(4):277–303.  https://doi.org/10.1177/096228020101000404 CrossRefPubMedGoogle Scholar
  59. 59.
    Willer CJ, Li Y, Abecasis GR (2010) METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26(17):2190–2191.  https://doi.org/10.1093/bioinformatics/btq340 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Magi R, Morris AP (2010) GWAMA: software for genome-wide association meta-analysis. BMC Bioinformatics 11:288.  https://doi.org/10.1186/1471-2105-11-288 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Aulchenko YS, Ripke S, Isaacs A et al (2007) GenABEL: an R library for genome-wide association analysis. Bioinformatics 23(10):1294–1296.  https://doi.org/10.1093/bioinformatics/btm108 CrossRefPubMedGoogle Scholar
  62. 62.
    Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575.  https://doi.org/10.1086/519795 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Cotsapas C, Voight BF, Rossin E et al (2011) Pervasive sharing of genetic effects in autoimmune disease. PLoS Genet 7(8):e1002254.  https://doi.org/10.1371/journal.pgen.1002254 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Bhattacharjee S, Rajaraman P, Jacobs KB et al (2012) A subset-based approach improves power and interpretation for the combined analysis of genetic association studies of heterogeneous traits. Am J Hum Genet 90(5):821–835.  https://doi.org/10.1016/j.ajhg.2012.03.015 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Zhu X, Feng T, Tayo BO et al (2015) Meta-analysis of correlated traits via summary statistics from GWASs with an application in hypertension. Am J Hum Genet 96(1):21–36.  https://doi.org/10.1016/j.ajhg.2014.11.011 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Huang J, Johnson AD, O'Donnell CJ (2011) PRIMe: a method for characterization and evaluation of pleiotropic regions from multiple genome-wide association studies. Bioinformatics 27(9):1201–1206.  https://doi.org/10.1093/bioinformatics/btr116 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    van der Sluis S, Posthuma D, Dolan CV (2013) TATES: efficient multivariate genotype–phenotype analysis for genome-wide association studies. PLoS Genet 9(1):e1003235.  https://doi.org/10.1371/journal.pgen.1003235 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Conneely KN, Boehnke M (2010) Meta-analysis of genetic association studies and adjustment for multiple testing of correlated SNPs and traits. Genet Epidemiol 34(7):739–746.  https://doi.org/10.1002/gepi.20538 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Dimou NL, Bagos PG (2014) A multivariate method for meta-analysis of multiple outcomes in genetic association studies. Paper presented at the 35th Annual Conference of the International Society for Clinical Biostatistics, Vienna, AustriaGoogle Scholar
  70. 70.
    Jackson D, Riley R, White IR (2011) Multivariate meta-analysis: potential and promise. Stat Med 30(20):2481–2498.  https://doi.org/10.1002/sim.4172 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Mavridis D, Salanti G (2013) A practical introduction to multivariate meta-analysis. Stat Methods Med Res 22(2):133–158.  https://doi.org/10.1177/0962280211432219 CrossRefPubMedGoogle Scholar
  72. 72.
    Kirkham JJ, Riley RD, Williamson PR (2012) A multivariate meta-analysis approach for reducing the impact of outcome reporting bias in systematic reviews. Stat Med 31(20):2179–2195.  https://doi.org/10.1002/sim.5356 CrossRefPubMedGoogle Scholar
  73. 73.
    Higgins JP, Whitehead A (1996) Borrowing strength from external trials in a meta-analysis. Stat Med 15(24):2733–2749.  https://doi.org/10.1002/(SICI)1097-0258(19961230)15:24<2733::AID-SIM562>3.0.CO;2-0 CrossRefPubMedGoogle Scholar
  74. 74.
    Berkey CS, Hoaglin DC, Antczak-Bouckoms A et al (1998) Meta-analysis of multiple outcomes by regression with random effects. Stat Med 17(22):2537–2550CrossRefPubMedGoogle Scholar
  75. 75.
    White IR (2009) Multivariate random-effects meta-analysis. Stata J 9:40–56Google Scholar
  76. 76.
    Jackson D, White IR, Thompson SG (2010) Extending DerSimonian and Laird’s methodology to perform multivariate random effects meta-analyses. Stat Med 29(12):1282–1297.  https://doi.org/10.1002/sim.3602 CrossRefPubMedGoogle Scholar
  77. 77.
    Bagos PG (2015) Meta-analysis in Stata using gllamm. Res Synth Methods 6(4):310–332.  https://doi.org/10.1002/jrsm.1157 CrossRefPubMedGoogle Scholar
  78. 78.
    Viechtbauer W (2010) Conducting meta-analyses in R with the metafor package. J Stat Softw 36(3):1–48CrossRefGoogle Scholar
  79. 79.
    Gleser LJ, Olkin I (1994) Stochastically dependent effect sizes. In: Cooper HM, Hedges LV (eds) The handbook of research synthesis. Russell Sage Foundation, New York, pp 339–355Google Scholar
  80. 80.
    Trikalinos TA, Olkin I (2008) A method for the meta-analysis of mutually exclusive binary outcomes. Stat Med 27(21):4279–4300.  https://doi.org/10.1002/sim.3299 CrossRefPubMedGoogle Scholar
  81. 81.
    Berrington A, Cox DR (2003) Generalized least squares for the synthesis of correlated information. Biostatistics 4(3):423–431.  https://doi.org/10.1093/biostatistics/4.3.423 CrossRefPubMedGoogle Scholar
  82. 82.
    Greenland S, Longnecker MP (1992) Methods for trend estimation from summarized dose–response data, with applications to meta-analysis. Am J Epidemiol 135(11):1301–1309CrossRefPubMedGoogle Scholar
  83. 83.
    Berlin JA, Longnecker MP, Greenland S (1993) Meta-analysis of epidemiologic dose-response data. Epidemiology 4(3):218–228CrossRefPubMedGoogle Scholar
  84. 84.
    Lin DY, Sullivan PF (2009) Meta-analysis of genome-wide association studies with overlapping subjects. Am J Hum Genet 85(6):862–872.  https://doi.org/10.1016/j.ajhg.2009.11.001 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Zaykin DV, Kozbur DO (2010) P-Value based analysis for shared controls design in genome-wide association studies. Genet Epidemiol 34(7):725–738.  https://doi.org/10.1002/gepi.20536 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    le Cessie S, Nagelkerke N, Rosendaal FR et al (2008) Combining matched and unmatched control groups in case–control studies. Am J Epidemiol 168(10):1204–1210.  https://doi.org/10.1093/aje/kwn236 CrossRefPubMedGoogle Scholar
  87. 87.
    Bagos PG, Dimou NL, Liakopoulos TD et al (2011) Meta-analysis of family-based and case–control genetic association studies that use the same cases. Stat Appl Genet Mol Biol 10(1):Article19CrossRefGoogle Scholar
  88. 88.
    Daniels MJ, Hughes MD (1997) Meta-analysis for the evaluation of potential surrogate markers. Stat Med 16(17):1965–1982.  https://doi.org/10.1002/(SICI)1097-0258(19970915)16:17<1965::AID-SIM630>3.0.CO;2-M CrossRefPubMedGoogle Scholar
  89. 89.
    Bagos PG (2012) On the covariance of two correlated log-odds ratios. Stat Med 31(14):1418–1431.  https://doi.org/10.1002/sim.4474 CrossRefPubMedGoogle Scholar
  90. 90.
    Clayton D, Hills M (1993) Statistical models in epidemiology. Oxford University Press, OxfordGoogle Scholar
  91. 91.
    Agresti A (2002) Categorical data analysis. Wiley series in probability and mathematical statistics. In: Applied probability and statistics, 2nd edn. John Wiley & Sons, New YorkGoogle Scholar
  92. 92.
    Attia J, Thakkinstian A, D'Este C (2003) Meta-analyses of molecular association studies: methodologic lessons for genetic epidemiology. J Clin Epidemiol 56(4):297–303CrossRefPubMedGoogle Scholar
  93. 93.
    Ioannidis JP, Trikalinos TA, Ntzani EE et al (2003) Genetic associations in large versus small studies: an empirical assessment. Lancet 361(9357):567–571.  https://doi.org/10.1016/S0140-6736(03)12516-0 CrossRefPubMedGoogle Scholar
  94. 94.
    Ioannidis JP, Trikalinos TA (2005) Early extreme contradictory estimates may appear in published research: the Proteus phenomenon in molecular genetics research and randomized trials. J Clin Epidemiol 58(6):543–549.  https://doi.org/10.1016/j.jclinepi.2004.10.019 CrossRefPubMedGoogle Scholar
  95. 95.
    Van Houwelingen HC, Zwinderman KH, Stijnen T (1993) A bivariate approach to meta-analysis. Stat Med 12(24):2273–2284CrossRefPubMedGoogle Scholar
  96. 96.
    Salanti G, Higgins JP (2008) Meta-analysis of genetic association studies under different inheritance models using data reported as merged genotypes. Stat Med 27(5):764–777.  https://doi.org/10.1002/sim.2919 CrossRefPubMedGoogle Scholar
  97. 97.
    McCullagh P, Nelder JA (1989) Generalized linear models. Chapman & Hall, LondonCrossRefGoogle Scholar
  98. 98.
    Skrondal A, Rabe-Hesketh S (2003) Multilevel logistic regression for polytomous data and rankings. Psychometrika 68(2):267–287CrossRefGoogle Scholar
  99. 99.
    Higgins JP, Whitehead A, Turner RM et al (2001) Meta-analysis of continuous outcome data from individual patients. Stat Med 20(15):2219–2241.  https://doi.org/10.1002/sim.918 CrossRefPubMedGoogle Scholar
  100. 100.
    Turner RM, Omar RZ, Yang M et al (2000) A multilevel model framework for meta-analysis of clinical trials with binary outcomes. Stat Med 19(24):3417–3432CrossRefPubMedGoogle Scholar
  101. 101.
    Zondervan KT, Cardon LR (2004) The complex interplay among factors that influence allelic association. Nat Rev Genet 5(2):89–100CrossRefPubMedGoogle Scholar
  102. 102.
    Marchini J, Cutler D, Patterson N et al (2006) A comparison of phasing algorithms for trios and unrelated individuals. Am J Hum Genet 78(3):437–450.  https://doi.org/10.1086/500808 CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Xu H, Wu X, Spitz MR et al (2004) Comparison of haplotype inference methods using genotypic data from unrelated individuals. Hum Hered 58(2):63–68CrossRefPubMedGoogle Scholar
  104. 104.
    Niu T (2004) Algorithms for inferring haplotypes. Genet Epidemiol 27(4):334–347.  https://doi.org/10.1002/gepi.20024 CrossRefPubMedGoogle Scholar
  105. 105.
    Becker T, Cichon S, Jonson E et al (2005) Multiple testing in the context of haplotype analysis revisited: application to case–control data. Ann Hum Genet 69(Pt 6):747–756.  https://doi.org/10.1111/j.1529-8817.2005.00198.x CrossRefPubMedGoogle Scholar
  106. 106.
    Becker T, Knapp M (2004) A powerful strategy to account for multiple testing in the context of haplotype analysis. Am J Hum Genet 75(4):561–570.  https://doi.org/10.1086/424390 CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Kaplan N, Morris R (2001) Issues concerning association studies for fine mapping a susceptibility gene for a complex disease. Genet Epidemiol 20(4):432–457.  https://doi.org/10.1002/gepi.1012 CrossRefPubMedGoogle Scholar
  108. 108.
    French B, Lumley T, Monks SA et al (2006) Simple estimates of haplotype relative risks in case–control data. Genet Epidemiol 30(6):485–494.  https://doi.org/10.1002/gepi.20161 CrossRefPubMedGoogle Scholar
  109. 109.
    Zaykin DV, Westfall PH, Young SS et al (2002) Testing association of statistically inferred haplotypes with discrete and continuous traits in samples of unrelated individuals. Hum Hered 53(2):79–91. doi:57986CrossRefPubMedGoogle Scholar
  110. 110.
    Lumley T (2002) Network meta-analysis for indirect treatment comparisons. Stat Med 21(16):2313–2324.  https://doi.org/10.1002/sim.1201 CrossRefPubMedGoogle Scholar
  111. 111.
    Marchini J, Donnelly P, Cardon LR (2005) Genome-wide strategies for detecting multiple loci that influence complex diseases. Nat Genet 37(4):413–417.  https://doi.org/10.1038/ng1537 CrossRefPubMedGoogle Scholar
  112. 112.
    Devlin B, Roeder K, Wasserman L (2003) Analysis of multilocus models of association. Genet Epidemiol 25(1):36–47.  https://doi.org/10.1002/gepi.10237 CrossRefPubMedGoogle Scholar
  113. 113.
    Shoemaker CA, Pungliya M, Sao Pedro MA et al (2001) Computational methods for single-point and multipoint analysis of genetic variants associated with a simulated complex disorder in a general population. Genet Epidemiol 21(Suppl 1):S738–S745CrossRefPubMedGoogle Scholar
  114. 114.
    Verzilli C, Shah T, Casas JP et al (2008) Bayesian meta-analysis of genetic association studies with different sets of markers. Am J Hum Genet 82(4):859–872.  https://doi.org/10.1016/j.ajhg.2008.01.016 CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Newcombe PJ, Verzilli C, Casas JP et al (2009) Multilocus Bayesian meta-analysis of gene-disease associations. Am J Hum Genet 84(5):567–580.  https://doi.org/10.1016/j.ajhg.2009.04.001 CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    De Iorio M, Newcombe PJ, Tachmazidou I et al (2011) Bayesian semiparametric meta-analysis for genetic association studies. Genet Epidemiol 35(5):333–340.  https://doi.org/10.1002/gepi.20581 CrossRefPubMedGoogle Scholar
  117. 117.
  118. 118.
    Franceschini N, Fox E, Zhang Z et al (2013) Genome-wide association analysis of blood-pressure traits in African-ancestry individuals reveals common associated genes in African and non-African populations. Am J Hum Genet 93(3):545–554.  https://doi.org/10.1016/j.ajhg.2013.07.010 CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Ehret GB, Munroe PB, International Consortium for Blood Pressure Genome-Wide Association Studies et al (2011) Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478(7367):103–109.  https://doi.org/10.1038/nature10405 CrossRefPubMedGoogle Scholar
  120. 120.
    O'Brien PC (1984) Procedures for comparing samples with multiple endpoints. Biometrics 40(4):1079–1087CrossRefPubMedGoogle Scholar
  121. 121.
    Xu X, Tian L, Wei LJ (2003) Combining dependent tests for linkage or association across multiple phenotypic traits. Biostatistics 4(2):223–229.  https://doi.org/10.1093/biostatistics/4.2.223 CrossRefPubMedGoogle Scholar
  122. 122.
    Yang Q, Wu H, Guo CY et al (2010) Analyze multivariate phenotypes in genetic association studies by combining univariate association tests. Genet Epidemiol 34(5):444–454.  https://doi.org/10.1002/gepi.20497 CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Yang Q, Wang Y (2012) Methods for analyzing multivariate phenotypes in genetic association studies. J Probab Stat 2012:652569.  https://doi.org/10.1155/2012/652569 CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Solovieff N, Cotsapas C, Lee PH et al (2013) Pleiotropy in complex traits: challenges and strategies. Nat Rev Genet 14(7):483–495.  https://doi.org/10.1038/nrg3461 CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Shriner D (2012) Moving toward system genetics through multiple trait analysis in genome-wide association studies. Front Genet 3(1).  https://doi.org/10.3389/fgene.2012.00001
  126. 126.
    Palmer TM, Thompson JR, Tobin MD (2008) Meta-analysis of Mendelian randomization studies incorporating all three genotypes. Stat Med 27(30):6570–6582.  https://doi.org/10.1002/sim.3423 CrossRefPubMedGoogle Scholar
  127. 127.
    Ohashi J, Yamamoto S, Tsuchiya N et al (2001) Comparison of statistical power between 2 * 2 allele frequency and allele positivity tables in case–control studies of complex disease genes. Ann Hum Genet 65(Pt 2):197–206CrossRefPubMedGoogle Scholar
  128. 128.
    Ohashi J, Tokunaga K (1999) Selecting a contingency table in a population-based association study: allele frequency or positivity? J Hum Genet 44(4):246–248.  https://doi.org/10.1007/s100380050152 CrossRefPubMedGoogle Scholar
  129. 129.
    Matthews AG, Haynes C, Liu C et al (2008) Collapsing SNP genotypes in case–control genome-wide association studies increases the type I error rate and power. Stat Appl Genet Mol Biol 7(1):Article23.  https://doi.org/10.2202/1544-6115.1325 CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Pereira TV, Patsopoulos NA, Pereira AC et al (2011) Strategies for genetic model specification in the screening of genome-wide meta-analysis signals for further replication. Int J Epidemiol 40(2):457–469.  https://doi.org/10.1093/ije/dyq203 CrossRefPubMedGoogle Scholar
  131. 131.
    Li Q, Yu K, Li Z et al (2008) MAX-rank: a simple and robust genome-wide scan for case-control association studies. Hum Genet 123(6):617–623.  https://doi.org/10.1007/s00439-008-0514-8 CrossRefPubMedGoogle Scholar
  132. 132.
    Gonzalez JR, Carrasco JL, Dudbridge F, Armengol L, Estivill X, Moreno V (2008) Maximizing association statistics over genetic models. Genet Epidemiol 32(3):246–254.  https://doi.org/10.1002/gepi.20299 CrossRefPubMedGoogle Scholar
  133. 133.
    Li Q, Zheng G, Li Z et al (2008) Efficient approximation of P-value of the maximum of correlated tests, with applications to genome-wide association studies. Ann Hum Genet 72(Pt 3):397–406.  https://doi.org/10.1111/j.1469-1809.2008.00437.x CrossRefPubMedGoogle Scholar
  134. 134.
    Trikalinos TA, Salanti G, Khoury MJ et al (2006) Impact of violations and deviations in Hardy–Weinberg equilibrium on postulated gene-disease associations. Am J Epidemiol 163(4):300–309.  https://doi.org/10.1093/aje/kwj046 CrossRefPubMedGoogle Scholar
  135. 135.
    Salanti G, Amountza G, Ntzani EE et al (2005) Hardy–Weinberg equilibrium in genetic association studies: an empirical evaluation of reporting, deviations, and power. Eur J Hum Genet 13(7):840–848.  https://doi.org/10.1038/sj.ejhg.5201410 CrossRefPubMedGoogle Scholar
  136. 136.
    Minelli C, Thompson JR, Abrams KR et al (2008) How should we use information about HWE in the meta-analyses of genetic association studies? Int J Epidemiol 37(1):136–146.  https://doi.org/10.1093/ije/dym234 CrossRefPubMedGoogle Scholar
  137. 137.
    Zaykin DV, Meng Z, Ghosh SK (2004) Interval estimation of genetic susceptibility for retrospective case–control studies. BMC Genet 5:9.  https://doi.org/10.1186/1471-2156-5-9 CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Schaid DJ, Jacobsen SJ (1999) Biased tests of association: comparisons of allele frequencies when departing from Hardy–Weinberg proportions. Am J Epidemiol 149(8):706–711CrossRefPubMedGoogle Scholar
  139. 139.
    Lathrop GM (1983) Estimating genotype relative risks. Tissue Antigens 22(2):160–166CrossRefPubMedGoogle Scholar
  140. 140.
    Sato Y, Suganami H, Hamada C et al (2006) The confidence interval of allelic odds ratios under the Hardy–Weinberg disequilibrium. J Hum Genet 51(9):772–780.  https://doi.org/10.1007/s10038-006-0020-6 CrossRefPubMedGoogle Scholar
  141. 141.
    Zintzaras E (2008) Variance estimation of allele-based odds ratio in the absence of Hardy–Weinberg equilibrium. Eur J Epidemiol 23(5):323–326.  https://doi.org/10.1007/s10654-008-9242-6 CrossRefPubMedGoogle Scholar
  142. 142.
    Salanti G, Higgins JP, Trikalinos TA et al (2007) Bayesian meta-analysis and meta-regression for gene-disease associations and deviations from Hardy–Weinberg equilibrium. Stat Med 26(3):553–567.  https://doi.org/10.1002/sim.2575 CrossRefPubMedGoogle Scholar
  143. 143.
    Lindley D (1988) Statistical inference concerning Hardy–Weinberg equilibrium. Bayesian Stat 3:307–326Google Scholar
  144. 144.
    Pereira C, Rogatko A (1984) The Hardy–Weinberg equilibrium under a Bayesian perspective. Revista Brasileira de Genética 7(4):689–707Google Scholar
  145. 145.
    Weir BS (1970) Equilibria under inbreeding and selection. Genetics 65(2):371–378PubMedPubMedCentralGoogle Scholar
  146. 146.
    Thompson J, Minelli C, Abrams K et al (2008) Combining information from related meta-analyses of genetic association studies. J R Stat Soc Ser C Appl Stat 57(1):103–115CrossRefGoogle Scholar
  147. 147.
    Aschard H, Hancock DB, London SJ et al (2011) Genome-wide meta-analysis of joint tests for genetic and gene–environment interaction effects. Hum Hered 70(4):292–300CrossRefPubMedCentralGoogle Scholar
  148. 148.
    Manning AK, LaValley M, Liu CT et al (2011) Meta-analysis of gene–environment interaction: joint estimation of SNP and SNP× environment regression coefficients. Genet Epidemiol 35(1):11–18CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Salanti G, Higgins JP, White IR (2006) Bayesian synthesis of epidemiological evidence with different combinations of exposure groups: application to a gene–gene–environment interaction. Stat Med 25(24):4147–4163.  https://doi.org/10.1002/sim.2689 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Niki L. Dimou
    • 1
    • 2
  • Katerina G. Pantavou
    • 1
  • Georgia G. Braliou
    • 1
  • Pantelis G. Bagos
    • 1
    Email author
  1. 1.Department of Computer Science and Biomedical InformaticsUniversity of ThessalyLamiaGreece
  2. 2.Department of Hygiene and EpidemiologyUniversity of Ioannina School of MedicineIoanninaGreece

Personalised recommendations