Methods for Polygenic Traits

  • Raha PazokiEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1793)


An important aspect of public health is disease prediction and health promotion through better targeting of preventive strategies. Well-targeted preventive strategies will eventually decrease burden of diseases and thus precise prediction plays a crucial role in public health. Many investigators put efforts into finding models that improve prediction using known risk factors of diseases. Recently with the overwhelming load of genetic loci discovered for complex diseases through genome-wide association studies (GWAS), much of attention has been focused on the role of these genetic loci to improve prediction models. Genetic loci in solo explain little variance of diseases. It is thus necessary to create new genetic parameters that combine the effect of as many genetic loci as possible. Such new parameters aim to better distinguish individuals who will develop a disease from those who will not. In this chapter, various polygenic methods that use multiple genetic loci to directly or indirectly improve precision of genetic prediction are discussed.

Key words

Genetic prediction Genetic risk score Genome-wide polygenic score GWAS SNP 


  1. 1.
    Guttmacher AE, Collins FS, Carmona RH (2004) The family history--more important than ever. N Engl J Med 351:2333–2336CrossRefPubMedGoogle Scholar
  2. 2.
    Reyna BA, Pickler RH (1999) Patterns of genetic inheritance. Neonatal Netw 18:7–10CrossRefPubMedGoogle Scholar
  3. 3.
    Maher BS (2015) Polygenic scores in epidemiology: risk prediction, etiology, and clinical utility. Curr Epidemiol Rep 2:239–244CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Cotsapas C, Hafler DA (2013) Immune-mediated disease genetics: the shared basis of pathogenesis. Trends Immunol 34:22–26CrossRefPubMedGoogle Scholar
  5. 5.
    Dudbridge F (2016) Polygenic epidemiology. Genet Epidemiol 40:268–272CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Antonarakis SE, Beckmann JS (2006) Mendelian disorders deserve more attention. Nat Rev Genet 7:277–282CrossRefPubMedGoogle Scholar
  7. 7.
    Amberger J, Bocchini CA, Scott AF, Hamosh A (2009) McKusick's online Mendelian inheritance in man (OMIM). Nucleic Acids Res 37:D793–D796CrossRefPubMedGoogle Scholar
  8. 8.
    Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A (2015) online Mendelian inheritance in man (OMIM(R)), an online catalog of human genes and genetic disorders. Nucleic Acids Res 43:D789–D798CrossRefPubMedGoogle Scholar
  9. 9.
    Hamosh A et al (2002) Online Mendelian inheritance in man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 30:52–55CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA (2005) Online Mendelian inheritance in man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 33:D514–D517CrossRefPubMedGoogle Scholar
  11. 11.
    Jostins L, Barrett JC (2011) Genetic risk prediction in complex disease. Hum Mol Genet 20:R182–R188CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Yang Q et al (1998) Family history score as a predictor of breast cancer mortality: prospective data from the cancer prevention study II, United States, 1982-1991. Am J Epidemiol 147:652–659CrossRefPubMedGoogle Scholar
  13. 13.
    Li R et al (2000) Family risk score of coronary heart disease (CHD) as a predictor of CHD: the atherosclerosis risk in communities (ARIC) study and the NHLBI family heart study. Genet Epidemiol 18:236–250CrossRefPubMedGoogle Scholar
  14. 14.
    Leander K, Hallqvist J, Reuterwall C, Ahlbom A, de Faire U (2001) Family history of coronary heart disease, a strong risk factor for myocardial infarction interacting with other cardiovascular risk factors: results from the Stockholm Heart Epidemiology Program (SHEEP). Epidemiology 12:215–221CrossRefPubMedGoogle Scholar
  15. 15.
    Graffagnino C, Gasecki AP, Doig GS, Hachinski VC (1994) The importance of family history in cerebrovascular disease. Stroke 25:1599–1604CrossRefPubMedGoogle Scholar
  16. 16.
    Friedlander Y et al (2001) Family history as a risk factor for early onset myocardial infarction in young women. Atherosclerosis 156:201–207CrossRefPubMedGoogle Scholar
  17. 17.
    Tada H et al (2016) Risk prediction by genetic risk scores for coronary heart disease is independent of self-reported family history. Eur Heart J 37:561–567CrossRefPubMedGoogle Scholar
  18. 18.
    Muller B et al (2016) Improved prediction of complex diseases by common genetic markers: state of the art and further perspectives. Hum Genet 135:259–272CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chen H et al (2016) Adding genetic risk score to family history identifies twice as many high-risk men for prostate cancer: results from the prostate cancer prevention trial. Prostate 76:1120–1129CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Stower H (2012) Complex disease: Family history versus SNPs for disease predictions. Nat Rev Genet 13:827–827CrossRefGoogle Scholar
  21. 21.
    Do CB, Hinds DA, Francke U, Eriksson N (2012) Comparison of family history and SNPs for predicting risk of complex disease. PLoS Genet 8:e1002973CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Manson JE, Bassuk SS (2015) Biomarkers of cardiovascular disease risk in women. Metabolism 64:S33–S39CrossRefPubMedGoogle Scholar
  23. 23.
    Maher B (2008) Personal genomes: the case of the missing heritability. Nature 456:18–21CrossRefPubMedGoogle Scholar
  24. 24.
    Selzam S et al (2016) Predicting educational achievement from DNA. Mol Psychiatry 22:267–272CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sebastiani P, Solovieff N, Sun J (2012) Naïve Bayesian classifier and genetic risk score for genetic risk prediction of a categorical trait: not so different after all! Front Genet 3:26PubMedPubMedCentralGoogle Scholar
  26. 26.
    Drenos F, Whittaker JC, Humphries SE (2007) The use of meta-analysis risk estimates for candidate genes in combination to predict coronary heart disease risk. Ann Hum Genet 71:611–619CrossRefPubMedGoogle Scholar
  27. 27.
    Morrison AC et al (2007) Prediction of coronary heart disease risk using a genetic risk score: the atherosclerosis risk in communities study. Am J Epidemiol 166:28–35CrossRefPubMedGoogle Scholar
  28. 28.
    Kathiresan S et al (2008) Polymorphisms associated with cholesterol and risk of cardiovascular events. N Engl J Med 358:1240–1249CrossRefPubMedGoogle Scholar
  29. 29.
    Ripatti S et al (2010) A multilocus genetic risk score for coronary heart disease: case-control and prospective cohort analyses. Lancet 376:1393–1400CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Krarup NT et al (2015) A genetic risk score of 45 coronary artery disease risk variants associates with increased risk of myocardial infarction in 6041 Danish individuals. Atherosclerosis 240:305–310CrossRefPubMedGoogle Scholar
  31. 31.
    Vaarhorst AAM et al (2012) Literature-based genetic risk scores for coronary heart disease; the CAREMA prospective-cohort study. Circulation: Cardiovascular Genetics 5(2):202–209Google Scholar
  32. 32.
    Lluis-Ganella C et al (2012) Assessment of the value of a genetic risk score in improving the estimation of coronary risk. Atherosclerosis 222:456–463CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Andreassi MG et al (2012) Individual and summed effects of high-risk genetic polymorphisms on recurrent cardiovascular events following ischemic heart disease. Atherosclerosis 223:409–415CrossRefPubMedGoogle Scholar
  34. 34.
    Patel RS et al (2012) Association of a Genetic Risk Score with Prevalent and Incident Myocardial Infarction in subjects undergoing coronary angiography. Circ Cardiovasc Genet 5:441–449CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Li X et al (2013) Genome-wide association study identifies TH1 pathway genes associated with lung function in asthmatic patients. J Allergy Clin Immunol 132:313–20.e15CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ganna A et al (2013) Multilocus genetic risk scores for coronary heart disease prediction. Arterioscler Thromb Vasc Biol 33:2267–2272CrossRefPubMedGoogle Scholar
  37. 37.
    de Vries PS et al (2015) Incremental predictive value of 152 single nucleotide polymorphisms in the 10-year risk prediction of incident coronary heart disease: the Rotterdam study. Int J Epidemiol 44:682–688CrossRefPubMedGoogle Scholar
  38. 38.
    Hindieh W et al (2016) Association between family history, a genetic risk score, and severity of coronary artery disease in patients with premature acute coronary syndromes. Arterioscler Thromb Vasc Biol 36:1286–1292CrossRefPubMedGoogle Scholar
  39. 39.
    Purcell SM et al (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460:748–752PubMedGoogle Scholar
  40. 40.
    Chatterjee N, Shi J, Garcia-Closas M (2016) Developing and evaluating polygenic risk prediction models for stratified disease prevention. Nat Rev Genet 17:392–406CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Vilhjalmsson BJ et al (2015) Modeling linkage disequilibrium increases accuracy of polygenic risk scores. Am J Hum Genet 97:576–592CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Speliotes EK et al (2010) Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet 42:937–948CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Simonson MA, Wills AG, Keller MC, McQueen MB (2011) Recent methods for polygenic analysis of genome-wide data implicate an important effect of common variants on cardiovascular disease risk. BMC Med Genet 12:146CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Purcell S et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Chang CC et al (2015) Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4:7CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Rothman KJ, Greenland S (2005) Causation and causal inference in epidemiology. Am J Public Health 95:S144–S150CrossRefPubMedGoogle Scholar
  47. 47.
    Verduijn M, Siegerink B, Jager KJ, Zoccali C, Dekker FW (2010) Mendelian randomization: use of genetics to enable causal inference in observational studies. Nephrol Dial Transplant 25:1394–1398CrossRefPubMedGoogle Scholar
  48. 48.
    Burgess S, Thompson SG (2013) Use of allele scores as instrumental variables for Mendelian randomization. Int J Epidemiol 42:1134–1144CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Solovieff N, Cotsapas C, Lee PH, Purcell SM, Smoller JW (2013) Pleiotropy in complex traits: challenges and strategies. Nat Rev Genet 14:483–495CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Epidemiology and Biostatistics (inc MRC-HPA Centre), School of Public HealthImperial College LondonLondonUK

Personalised recommendations