Skip to main content

Reporter-Based BRET Sensors for Measuring Biological Functions In Vivo

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1790))

Abstract

Genetic reporter systems provide a good alternative to monitor cellular functions in vitro and in vivo and are contributing immensely in experimental research. Reporters like fluorescence and bioluminescence genes, which support optical measurements, provide exquisite sensitivity to the assay systems. In recent years several activatable strategies have been developed, which can relay specialized molecular functions from inside the cells. The application of bioluminescence resonance energy transfer (BRET) is one such strategy that has been proved to be extremely valuable as an in vitro or in vivo assay to measure dynamic events such as protein-protein interactions (PPIs).

The BRET assay using RLuc-YFP was introduced in biological research in the late 1990s and demonstrated the interaction of two proteins involved in circadian rhythm. Since then, BRET has become a popular genetic reporter-based assay for PPI studies due to several inherent attributes that facilitate high-throughput assay development such as rapid and fairly sensitive ratio-metric measurement, the assessment of PPI irrespective of protein location in cellular compartment and cost effectiveness. In BRET-based screening, within a defined proximity range of 10–100 Å, the excited energy state of the luminescent molecule excites the acceptor fluorophore in the form of resonance energy transfer, causing it to emit at its characteristic emission wavelength. Based on this principle, several such donor-acceptor pairs, using Renilla luciferase or its mutants as donor and either GFP2, YFP, mOrange, TagRFP or TurboFP as acceptor, have been reported for use.

In recent years, the applicability of BRET has been greatly enhanced by the adaptation of the assay to multiple detection devices such as a luminescence plate reader, a bioluminescence microscope and a small animal optical imaging platform. Apart from quantitative measurement studies of PPIs and protein dimerization, molecular spectral imaging has expanded the scope for fast screening of pharmacological compounds that modulate PPIs by unifying in vitro, live cell and in vivo animal/plant measurement, all using one assay. Using examples from the literature, we will describe methods to perform in vitro and in vivo BRET imaging experiments and some of its applications.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Blasberg RG, Tjuvajev JG (2003) Molecular-genetic imaging: current and future perspectives. J Clin Invest 111(11):1620–1629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Ray P et al (2001) Monitoring gene therapy with reporter gene imaging. Semin Nucl Med 31(4):312–320

    Article  PubMed  CAS  Google Scholar 

  3. Tannous BA (2009) Gaussia luciferase reporter assay for monitoring biological processes in culture and in vivo. Nat Protoc 4(4):582–591

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Hall MP et al (2012) Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem Biol 7(11):1848–1857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Greer LF III, Szalay AA (2002) Imaging of light emission from the expression of luciferases in living cells and organisms: a review. Luminescence 17(1):43–74

    Article  PubMed  CAS  Google Scholar 

  6. Kelkar M, De A (2012) Bioluminescence based in vivo screening technologies. Curr Opin Pharmacol 12(5):592–600

    Article  PubMed  CAS  Google Scholar 

  7. Mezzanotte L et al (2011) Sensitive dual color in vivo bioluminescence imaging using a new red codon optimized firefly luciferase and a green click beetle luciferase. PLoS One 6(4):e19277

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Loening AM et al (2006) Consensus guided mutagenesis of Renilla luciferase yields enhanced stability and light output. Protein Eng Des Sel 19(9):391–400

    Article  PubMed  CAS  Google Scholar 

  9. Nyati S et al (2011) Molecular imaging of TGFbeta-induced Smad2/3 phosphorylation reveals a role for receptor tyrosine kinases in modulating TGFbeta signaling. Clin Cancer Res 17(23):7424–7439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Dogra S et al (2016) Tango assay for ligand-induced GPCR-beta-arrestin2 interaction: application in drug discovery. Methods Cell Biol 132:233–254

    Article  PubMed  Google Scholar 

  11. Barnea G et al (2008) The genetic design of signaling cascades to record receptor activation. Proc Natl Acad Sci U S A 105(1):64–69

    Article  PubMed  Google Scholar 

  12. Pogmore JP et al (2016) Using forster-resonance energy transfer to measure protein interactions between Bcl-2 family proteins on mitochondrial membranes. Methods Mol Biol 1419:197–212

    Article  PubMed  Google Scholar 

  13. Ray P et al (2008) Monitoring caspase-3 activation with a multimodality imaging sensor in living subjects. Clin Cancer Res 14(18):5801–5809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Prinz A et al (2006) Novel, isotype-specific sensors for protein kinase A subunit interaction based on bioluminescence resonance energy transfer (BRET). Cell Signal 18(10):1616–1625

    Article  PubMed  CAS  Google Scholar 

  15. Kang JH, Chung JK (2008) Molecular-genetic imaging based on reporter gene expression. J Nucl Med 49(Suppl 2):164S–179S

    Article  PubMed  CAS  Google Scholar 

  16. Moroz E et al (2009) Real-time imaging of HIF-1alpha stabilization and degradation. PLoS One 4(4):e5077

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Shachaf CM et al (2004) MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 431(7012):1112–1117

    Article  PubMed  Google Scholar 

  18. Korpal M et al (2009) Imaging transforming growth factor-beta signaling dynamics and therapeutic response in breast cancer bone metastasis. Nat Med 15(8):960–966

    Article  PubMed  CAS  Google Scholar 

  19. Nakajima Y et al (2005) Multicolor luciferase assay system: one-step monitoring of multiple gene expressions with a single substrate. BioTechniques 38(6):891–894

    Article  PubMed  CAS  Google Scholar 

  20. Arkin MR, Wells JA (2004) Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nat Rev Drug Discov 3(4):301–317

    Article  PubMed  CAS  Google Scholar 

  21. Phizicky EM, Fields S (1995) Protein-protein interactions: methods for detection and analysis. Microbiol Rev 59(1):94–123

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Ciruela F (2008) Fluorescence-based methods in the study of protein-protein interactions in living cells. Curr Opin Biotechnol 19(4):338–343

    Article  PubMed  CAS  Google Scholar 

  23. Gorokhovatsky AY et al (2004) Fusion of Aequorea victoria GFP and aequorin provides their Ca(2+)-induced interaction that results in red shift of GFP absorption and efficient bioluminescence energy transfer. Biochem Biophys Res Commun 320(3):703–711

    Article  PubMed  CAS  Google Scholar 

  24. Canals M et al (2004) Homodimerization of adenosine A2A receptors: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. J Neurochem 88(3):726–734

    Article  PubMed  CAS  Google Scholar 

  25. Terrillon S et al (2003) Oxytocin and vasopressin V1a and V2 receptors form constitutive homo- and heterodimers during biosynthesis. Mol Endocrinol 17(4):677–691

    Article  PubMed  CAS  Google Scholar 

  26. Stoddart LA et al (2015) Application of BRET to monitor ligand binding to GPCRs. Nat Methods 12(7):661–663

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Siddiqui S et al (2013) BRET biosensor analysis of receptor tyrosine kinase functionality. Front Endocrinol (Lausanne) 4:46

    Google Scholar 

  28. Kaczor AA et al (2014) Application of BRET for studying G protein-coupled receptors. Mini Rev Med Chem 14(5):411–425

    Article  PubMed  CAS  Google Scholar 

  29. Paulmurugan R, Umezawa Y, Gambhir SS (2002) Noninvasive imaging of protein-protein interactions in living subjects by using reporter protein complementation and reconstitution strategies. Proc Natl Acad Sci U S A 99(24):15608–15613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Dragulescu-Andrasi A et al (2011) Bioluminescence resonance energy transfer (BRET) imaging of protein-protein interactions within deep tissues of living subjects. Proc Natl Acad Sci U S A 108(29):12060–12065

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ogoh K et al (2014) Bioluminescence microscopy using a short focal-length imaging lens. J Microsc 253(3):191–197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Yamaguchi S et al (2003) Synchronization of cellular clocks in the suprachiasmatic nucleus. Science 302(5649):1408–1412

    Article  PubMed  CAS  Google Scholar 

  33. De A et al (2009) BRET3: a red-shifted bioluminescence resonance energy transfer (BRET)-based integrated platform for imaging protein-protein interactions from single live cells and living animals. FASEB J 23(8):2702–2709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Coulon V et al (2008) Subcellular imaging of dynamic protein interactions by bioluminescence resonance energy transfer. Biophys J 94(3):1001–1009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Akiyoshi R et al (2014) Bioluminescence imaging to track real-time armadillo promoter activity in live Drosophila embryos. Anal Bioanal Chem 406(23):5703–5713

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Bergkessel M, Guthrie C (2014) Colony PCR. Methods Enzymol 529:299–309

    Article  CAS  Google Scholar 

  37. Verveer PJ et al (2006) Imaging protein interactions by FRET microscopy: FRET measurements by acceptor photobleaching. CSH Protoc 2006(6):pii:pdb.prot4598. https://doi.org/10.1101/pdb.prot4598

    Article  Google Scholar 

  38. Close DM et al (2011) In vivo bioluminescent imaging (BLI): noninvasive visualization and interrogation of biological processes in living animals. Sensors (Basel) 11(1):180–206

    Article  CAS  Google Scholar 

  39. De A, Arora R, Jasani A (2014) Engineering aspects of bioluminescence resonance energy transfer systems. In: Cai W (ed) Engineering in translational medicine. Springer, London, pp 257–300

    Chapter  Google Scholar 

  40. Mercier JF et al (2002) Quantitative assessment of beta 1- and beta 2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer. J Biol Chem 277(47):44925–44931

    Article  PubMed  CAS  Google Scholar 

  41. Kroeger KM et al (2001) Constitutive and agonist-dependent homo-oligomerization of the thyrotropin-releasing hormone receptor. Detection in living cells using bioluminescence resonance energy transfer. J Biol Chem 276(16):12736–12743

    Article  PubMed  CAS  Google Scholar 

  42. Felce JH, Knox RG, Davis SJ (2014) Type-3 BRET, an improved competition-based bioluminescence resonance energy transfer assay. Biophys J 106(12):L41–L43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Inoue Y et al (2009) Comparison of subcutaneous and intraperitoneal injection of D-luciferin for in vivo bioluminescence imaging. Eur J Nucl Med Mol Imaging 36(5):771–779

    Article  PubMed  CAS  Google Scholar 

  44. Lee KH et al (2003) Cell uptake and tissue distribution of radioiodine labelled D-luciferin: implications for luciferase based gene imaging. Nucl Med Commun 24(9):1003–1009

    Article  PubMed  CAS  Google Scholar 

  45. De A et al (2013) Evolution of BRET biosensors from live cell to tissue-scale in vivo imaging. Front Endocrinol (Lausanne) 4:131

    Google Scholar 

  46. Carriba P et al (2008) Detection of heteromerization of more than two proteins by sequential BRET-FRET. Nat Methods 5(8):727–733

    Article  PubMed  CAS  Google Scholar 

  47. Branchini BR et al (2011) Sequential bioluminescence resonance energy transfer-fluorescence resonance energy transfer-based ratiometric protease assays with fusion proteins of firefly luciferase and red fluorescent protein. Anal Biochem 414(2):239–245

    Article  PubMed  CAS  Google Scholar 

  48. Vidi PA, Watts VJ (2009) Fluorescent and bioluminescent protein-fragment complementation assays in the study of G protein-coupled receptor oligomerization and signaling. Mol Pharmacol 75(4):733–739

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Bacart J et al (2008) The BRET technology and its application to screening assays. Biotechnol J 3(3):311–324

    Article  PubMed  CAS  Google Scholar 

  50. Machleidt T et al (2015) NanoBRET—a Novel BRET platform for the analysis of protein-protein interactions. ACS Chem Biol 10(8):1797–1804

    Article  PubMed  CAS  Google Scholar 

  51. Kim GB, Kim YP (2012) Analysis of protease activity using quantum dots and resonance energy transfer. Theranostics 2(2):127–138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Bakayan A et al (2011) Red fluorescent protein-aequorin fusions as improved bioluminescent Ca2+ reporters in single cells and mice. PLoS One 6(5):e19520

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit De .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rathod, M., Mal, A., De, A. (2018). Reporter-Based BRET Sensors for Measuring Biological Functions In Vivo. In: Dubey, P. (eds) Reporter Gene Imaging. Methods in Molecular Biology, vol 1790. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7860-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7860-1_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7858-8

  • Online ISBN: 978-1-4939-7860-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics