Skip to main content

Imaging T Cell Dynamics and Function Using PET and Human Nuclear Reporter Genes

  • Protocol
  • First Online:
Reporter Gene Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1790))

Abstract

Adoptive cell transfer immunotherapy has demonstrated significant promise in the treatment of cancer, with long-term, durable responses. T cells expressing T cell receptors (TCRs) that recognize tumor antigens, or engineered with chimeric antigen receptors (CARs) can recognize and eliminate tumor cells even in advanced disease. Positron emission tomography (PET) imaging with nuclear reporter genes, a noninvasive method to track and monitor function of engineered cells in vivo, allows quantitative, longitudinal monitoring of these cells, including their expansion/contraction, migration, retention at target and off-target sites, and biological state. As an additional advantage, some reporter genes also exhibit “suicide potential” permitting the safe elimination of adoptively transferred T cells in instances of adverse reaction to therapy. Here, we describe the production of human nuclear reporter gene-expressing T cells and noninvasive PET imaging to monitor their cell fate in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosenberg SA, Restifo NP (2015) Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348(6230):62–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Couzin-Frankel J (2013) Breakthrough of the year 2013. Cancer immunotherapy. Science 342(6165):1432–1433

    Article  CAS  PubMed  Google Scholar 

  3. Fesnak AD, June CH, Levine BL (2016) Engineered T cells: the promise and challenges of cancer immunotherapy. Nat Rev Cancer 16(9):566–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sadelain M, Brentjens R, Riviere I (2013) The basic principles of chimeric antigen receptor design. Cancer Discov 3(4):388–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cartellieri M et al (2010) Chimeric antigen receptor-engineered T cells for immunotherapy of cancer. J Biomed Biotechnol 2010:956304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sadelain M (2015) CAR therapy: the CD19 paradigm. J Clin Invest 125(9):3392–3400

    Article  PubMed  PubMed Central  Google Scholar 

  7. Morello A, Sadelain M, Adusumilli PS (2016) Mesothelin-targeted CARs: driving T cells to solid tumors. Cancer Discov 6(2):133–146

    Article  CAS  PubMed  Google Scholar 

  8. Restifo NP, Smyth MJ, Snyder A (2016) Acquired resistance to immunotherapy and future challenges. Nat Rev Cancer 16(2):121–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Moynihan KD et al (2006) Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses. Nat Med 22(12):1402–1410

    Article  CAS  Google Scholar 

  10. Lucignani G et al (2006) Molecular imaging of cell-mediated cancer immunotherapy. Trends Biotechnol 24(9):410–418

    Article  CAS  PubMed  Google Scholar 

  11. Akins EJ, Dubey P (2008) Noninvasive imaging of cell-mediated therapy for treatment of cancer. J Nucl Med 49(Suppl 2):180S–195S

    Article  CAS  PubMed  Google Scholar 

  12. Yaghoubi SS et al (2012) Positron emission tomography reporter genes and reporter probes: gene and cell therapy applications. Theranostics 2(4):374–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sadelain M (2009) T-cell engineering for cancer immunotherapy. Cancer J 15(6):451–455

    Article  CAS  PubMed  Google Scholar 

  14. Wang X, Riviere I (2016) Clinical manufacturing of CAR T cells: foundation of a promising therapy. Mol Ther Oncolytics 3:16015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Likar Y et al (2010) A new pyrimidine-specific reporter gene: a mutated human deoxycytidine kinase suitable for PET during treatment with acycloguanosine-based cytotoxic drugs. J Nucl Med 51(9):1395–1403

    Article  CAS  PubMed  Google Scholar 

  16. Yaghoubi SS et al (2009) Noninvasive detection of therapeutic cytolytic T cells with 18F-FHBG PET in a patient with glioma. Nat Clin Pract Oncol 6(1):53–58

    Article  CAS  PubMed  Google Scholar 

  17. Ponomarev V et al (2001) Imaging TCR-dependent NFAT-mediated T-cell activation with positron emission tomography in vivo. Neoplasia 3(6):480–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Minn I et al (2014) Molecular-genetic imaging of cancer. Adv Cancer Res 124:131–169

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shu CJ et al (2009) Quantitative PET reporter gene imaging of CD8+ T cells specific for a melanoma-expressed self-antigen. Int Immunol 21(2):155–165

    Article  CAS  PubMed  Google Scholar 

  20. McCracken MN et al (2015) Noninvasive detection of tumor-infiltrating T cells by PET reporter imaging. J Clin Invest 125(5):1815–1826

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dobrenkov K et al (2008) Monitoring the efficacy of adoptively transferred prostate cancer-targeted human T lymphocytes with PET and bioluminescence imaging. J Nucl Med 49(7):1162–1170

    Article  PubMed  Google Scholar 

  22. Dubey P et al (2003) Quantitative imaging of the T cell antitumor response by positron-emission tomography. Proc Natl Acad Sci U S A 100(3):1232–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hoekstra ME et al (2015) Assessing T lymphocyte function and differentiation by genetically encoded reporter systems. Trends Immunol 36(7):392–400

    Article  CAS  PubMed  Google Scholar 

  24. Moroz MA et al (2015) Comparative analysis of T cell imaging with human nuclear reporter genes. J Nucl Med 56(7):1055–1060

    Article  CAS  PubMed  Google Scholar 

  25. Sadelain M, Frassoni F, Riviere I (2000) Issues in the manufacture and transplantation of genetically modified hematopoietic stem cells. Curr Opin Hematol 7(6):364–377

    Article  CAS  PubMed  Google Scholar 

  26. Zanzonico P et al (2006) [131I]FIAU labeling of genetically transduced, tumor-reactive lymphocytes: cell-level dosimetry and dose-dependent toxicity. Eur J Nucl Med Mol Imaging 33(9):988–997

    Article  CAS  PubMed  Google Scholar 

  27. Thie JA (2004) Understanding the standardized uptake value, its methods, and implications for usage. J Nucl Med 45(9):1431–1434

    PubMed  Google Scholar 

  28. Loening AM, Gambhir SS (2003) AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging 2(3):131–137

    Article  PubMed  Google Scholar 

  29. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rosset A, Spadola L, Ratib O (2004) OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digit Imaging 17(3):205–216

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIH P50 CA86438, R01 CA163980, and R01 CA161138 grants, Mr. William H. Goodwin and Mrs. Alice Goodwin and the Commonwealth Foundation for Cancer Research and The Experimental Therapeutics Center of Memorial Sloan-Kettering Cancer Center, NIH Small-Animal Imaging Research Program (SAIRP), NIH Shared Instrumentation Grant No. 1 S10 RR020892-01, NIH Shared Instrumentation Grant No. 1 S10 RR028889-01, and NIH Center Grant P30 CA08748.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Ponomarev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lee, J.T., Moroz, M.A., Ponomarev, V. (2018). Imaging T Cell Dynamics and Function Using PET and Human Nuclear Reporter Genes. In: Dubey, P. (eds) Reporter Gene Imaging. Methods in Molecular Biology, vol 1790. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7860-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7860-1_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7858-8

  • Online ISBN: 978-1-4939-7860-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics