Skip to main content

Flow Cytometry and Fluorescence Microscopy as Tools for Structural and Functional Analysis of Vacuoles Isolated from Yeast and Plant Cells

  • Protocol
  • First Online:
Plant Vacuolar Trafficking

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1789))

Abstract

A series of optimized protocols to isolate vacuoles from both yeast and plant cells, and to characterize the purified organelles at a functional and structural level, are described. For this purpose, we took advantage of the combined use of cell fractionation techniques with different fluorescence-based approaches namely flow cytometry, fluorescence microscopy and spectrofluorimetry. These protocols altogether constitute valuable tools for the study of vacuole structure and function, as well as for the high-throughput screening of drug libraries to identify new molecules that target the vacuole.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rodrigues J, Silva RD, Noronha H et al (2013) Flow cytometry as a novel tool for structural and functional characterization of isolated yeast vacuoles. Microbiology 159:848–856

    Article  CAS  PubMed  Google Scholar 

  2. Guicciardi ME, Leist M, Gores GJ (2004) Lysosomes in cell death. Oncogene 23:2881–2890

    Article  CAS  PubMed  Google Scholar 

  3. Klionsky DJ, Herman PK, Emr SD (1990) The fungal vacuole: composition, function, and biogenesis. Microbiol Rev 54:266–292

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Li SC, Kane PM (2009) The yeast lysosome-like vacuole: endpoint, function, and biogenesis. Microbial Rev 54:266–292

    Google Scholar 

  5. Pereira C, Chaves S, Alves S et al (2010) Mitochondrial degradation in acetic acid-induced yeast apoptosis: the role of Pep4 and the ADP/ATP carrier. Mol Microbiol 76:1398–1410

    Article  CAS  PubMed  Google Scholar 

  6. Schauer A, Knauer H, Ruckenstuhl C et al (2009) Vacuolar functions determine the mode of cell death. Biochim Biophys Acta 1793:540–545

    Article  CAS  PubMed  Google Scholar 

  7. Andreev IM (2012) Role of the vacuole in the redox homeostasis of plant cells. Russ J Plant Physiol 59(5):611–617. Original Russian Text, IM Andreev, 2012, published in Fiziologiya Rastenii, 2012, 59(5): 660–667

    Article  CAS  Google Scholar 

  8. Zhang C, Hicks GR, Raikhel NV (2015) Molecular composition of plant vacuoles: important but less understood regulations and roles of tonoplast lipids. Plants 4:320–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang S-Y, Huang T-K, Kuo H-F et al (2016) Role of vacuoles in phosphorous storage and remobilization. J Exp Bot. https://doi.org/10.1093/jxb/erw481

  10. Hirawa N, Kondo M, Nishimura M et al (1997) An aspartic proteinase is involved in the maturation of storage proteins in concert with the vacuolar processing enzyme. Eur J Biochem 246:133–141

    Article  Google Scholar 

  11. Obara K, Kuriyama H, Fukuda H (2001) Direct evidence of active and rapid nuclear degradation triggered by vacuole rupture during programmed cell death in zinnia. Plant Physiol 125:615–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ueda H, Nishiyama C, Shimada T et al (2006) AtVAM3 is required for normal specification of idioblasts, myrosin cells. Plant Cell Physiol 47:164–175

    Article  CAS  PubMed  Google Scholar 

  13. Martinoia E, Maeshima M, Neuhaus HE (2007) Vacuolar transporters and their essential role in plant metabolism. J Exp Bot 58:83–102

    Article  CAS  PubMed  Google Scholar 

  14. Hara-Nishimura I, Hatsugai N (2011) The role of vacuole in plant cell death. Cell Death Differ 18:1298–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Graham LA, Flannery AR, Stevens TH (2003) Structure and assembly of the yeast V-ATPase. J Bioenerg Biomembr 35:301–312

    Article  CAS  PubMed  Google Scholar 

  16. Kane PM (2006) The where, when, and how of organelle acidification by the yeast vacuolar H+-ATPase. Microbiol Mol Biol Rev 70:177–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fontes N, Silva R, Vignault C et al (2010) Purification and functional characterization of protoplasts and intact vacuoles from grape cells. BMC Res Notes 3:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Michaillat L, Baars TL, Mayer A (2012) Cell-free reconstitution of vacuole membrane fragmentation reveals regulation of vacuole size and number by TORC1. Mol Biol Cell 23:881–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sarry JE, Chen S, Collum RP et al (2007) Analysis of the vacuolar luminal proteome of Saccharomyces cerevisiae. FEBS J 274:4287–4305

    Article  CAS  PubMed  Google Scholar 

  20. Wiederhold E, Gandhi T, Permentier HP et al (2009) The yeast vacuolar membrane proteome. Mol Cell Proteomics 8:380–392

    Article  CAS  PubMed  Google Scholar 

  21. Schmidt UG, Endler A, Schelbert S et al (2007) Novel tonoplast transporters identified using a proteomic approach with vacuoles isolated from cauliflower buds. Plant Physiol 145(1):216–229. Epub 2007 July 27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Decker BL, Wickner WT (2006) Enolase activates homotypic vacuole fusion and protein transport to the vacuole in yeast. J Biol Chem 281:14523–14528

    Article  CAS  PubMed  Google Scholar 

  23. Carqueijeiro I, Noronha H, Duarte P et al (2013) Vacuolar transport of the medicinal alkaloids from Catharanthus roseus is mediated by a proton-driven antiport. Plant Physiol 162(3):1486–1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Martins V, Hanana M, Blumwald E et al (2012) Copper transport and compartmentation in grape cells. Plant Cell Physiol 53(11):1866–1880

    Article  CAS  PubMed  Google Scholar 

  25. Sousa MJ, Azevedo F, Pedras A et al (2011) Vacuole-mitochondrial cross-talk during apoptosis in yeast: a model for understanding lysosome-mitochondria-mediated apoptosis in mammals. Biochem Soc Trans 39(5):1533–1537

    Article  CAS  PubMed  Google Scholar 

  26. Silva P, Façanha AR, Tavares RM et al (2010) Role of tonoplast proton pumps and Na+/H+ antiport system in salt tolerance of populus eufrática oliv. J Plant Growth Regul 29(1):23–34

    Article  CAS  Google Scholar 

  27. Queirós F, Fontes N, Silva P et al (2009) Activity of tonoplast protón pumps and Na+/H+ exchange in potato cell cultures is modulated by salt. J Exp Bot 60(4):1363–1374

    Article  CAS  PubMed  Google Scholar 

  28. Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  29. Tohge T, Ramos MS, Nunes-Nesi A et al (2011) Toward the storage metabolome: profiling the barley vacuole. Plant Physiol 157:1469–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Maftah A, Petit JM, Ratinaud MH et al (1989) 10-N nonyl-acridine Orange: a fluorescente probe which stains mitochondria independently of their energetic state. Biochem Biophys Res Commun 164:185–190

    Article  CAS  PubMed  Google Scholar 

  31. Petit JM, Maftah A, Ratinaud MH et al (1992) 10N-nonyl acridine orange interacts with cardiolipin and allows the quantification of this phospholipid in isolated mitochondria. Eur J Biochem 209:267–273

    Article  CAS  PubMed  Google Scholar 

  32. Septinus M, Seiffert W, Zimmermann HW (1983) Hydrophobic acridine dyes for fluorescence staining of mitochondria in living cell. 1. Thermodynamic and spectroscopic properties of 10-n-alkylacridine orange chlorides. Histochemistry 79:443–456

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hernâni Gerós .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rodrigues, J.M.P., Pereira, C.S., Fontes, N., Gerós, H., Côrte-Real, M. (2018). Flow Cytometry and Fluorescence Microscopy as Tools for Structural and Functional Analysis of Vacuoles Isolated from Yeast and Plant Cells. In: Pereira, C. (eds) Plant Vacuolar Trafficking. Methods in Molecular Biology, vol 1789. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7856-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7856-4_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7855-7

  • Online ISBN: 978-1-4939-7856-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics