Phenotypic Screening of Small Molecules with Antimalarial Activity for Three Different Parasitic Life Stages

  • Nobutaka Kato
  • Sandra March
  • Sangeeta N. Bhatia
  • Matthias Marti
Part of the Methods in Molecular Biology book series (MIMB, volume 1787)


Malaria remains one of the deadliest infectious diseases globally. Available therapeutic agents are already limited in their efficacy, and drug resistance threatens to diminish further our ability to prevent and treat the disease. Despite a renewed effort to identify compounds with antimalarial activity, the drug discovery and development pipeline lacks target diversity and availability of compounds that target liver- and gametocyte-stage parasites. Phenotypic screens are a powerful and valuable tool for identifying new chemical compounds with antimalarial activity. This chapter highlights recent phenotypic screening methodologies for all three parasitic life stages.

Key words

Malaria Plasmodium falciparum Asexual blood-stage Liver-stage Gametocyte-stage Phenotypic screening 


  1. 1.
    World Health Organization WHO (2016) World Malaria ReportGoogle Scholar
  2. 2.
    Kato N, Comer E, Sakata-Kato T et al (2016) Diversity-oriented synthesis yields novel multistage antimalarial inhibitors. Nature 538:344–349CrossRefGoogle Scholar
  3. 3.
    Flannery EL, Chatterjee AK, Winzeler EA (2013) Antimalarial drug discovery—approaches and progress towards new medicines. Nat Rev Microbiol 11:849–862CrossRefGoogle Scholar
  4. 4.
    Eichborn v JF (1986) Medical and commercial aspects of human interferon. Arzneimittelforschung 36:279–282Google Scholar
  5. 5.
    Baniecki ML, Wirth DF, Clardy J (2007) High-throughput Plasmodium falciparum growth assay for malaria drug discovery. Antimicrob Agents Chemother 51:716–723CrossRefGoogle Scholar
  6. 6.
    Bennett TN, Paguio M, Gligorijevic B et al (2004) Novel, rapid, and inexpensive cell-based quantification of antimalarial drug efficacy. Antimicrob Agents Chemother 48:1807–1810CrossRefGoogle Scholar
  7. 7.
    Smilkstein M, Sriwilaijaroen N, Kelly JX et al (2004) Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrob Agents Chemother 48:1803–1806CrossRefGoogle Scholar
  8. 8.
    White NJ (2011) Determinants of relapse periodicity in Plasmodium vivax malaria. Malar J 10:297CrossRefGoogle Scholar
  9. 9.
    Mazier D, Rénia L, Snounou G (2009) A pre-emptive strike against malaria’s stealthy hepatic forms. Nat Rev Drug Discov 8:854–864CrossRefGoogle Scholar
  10. 10.
    Krotoski WA, Collins WE, Bray RS et al (1982) Demonstration of hypnozoites in sporozoite-transmitted Plasmodium vivax infection. Am J Trop Med Hyg 31:1291–1293CrossRefGoogle Scholar
  11. 11.
    March S, Ng S, Velmurugan S et al (2013) A microscale human liver platform that supports the hepatic stages of Plasmodium falciparum and vivax. Cell Host Microbe 14:104–115CrossRefGoogle Scholar
  12. 12.
    Chattopadhyay R, Velmurugan S, Chakiath C et al (2010) Establishment of an in vitro assay for assessing the effects of drugs on the liver stages of Plasmodium vivax malaria. PLoS One 5:e14275CrossRefGoogle Scholar
  13. 13.
    Epstein JE, Tewari K, Lyke KE et al (2011) Live attenuated malaria vaccine designed to protect through hepatic CD8+ T cell immunity. Science 334:475–480CrossRefGoogle Scholar
  14. 14.
    Meister S, Plouffe DM, Kuhen KL et al (2011) Imaging of plasmodium liver stages to drive next-generation antimalarial drug discovery. Science 334:1372–1377CrossRefGoogle Scholar
  15. 15.
    da Cruz FP, Martin C, Buchholz K et al (2012) Drug screen targeted at plasmodium liver stages identifies a potent multistage antimalarial drug. J Infect Dis 205:1278–1286CrossRefGoogle Scholar
  16. 16.
    Sattabongkot J, Yimamnuaychoke N, Leelaudomlipi S et al (2006) Establishment of a human hepatocyte line that supports in vitro development of the exo-erythrocytic stages of the malaria parasites Plasmodium falciparum and P. vivax. Am J Trop Med Hyg 74:708–715PubMedGoogle Scholar
  17. 17.
    Mazier D, Beaudoin RL, Mellouk S et al (1985) Complete development of hepatic stages of Plasmodium falciparum in vitro. Science 227:440–442CrossRefGoogle Scholar
  18. 18.
    Mazier D, Landau I, Druilhe P et al (1984) Cultivation of the liver forms of Plasmodium vivax in human hepatocytes. Nature 307:367–369CrossRefGoogle Scholar
  19. 19.
    Bhatia SN, Balis UJ, Yarmush ML, Toner M (1999) Effect of cell-cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASEB J 13:1883–1900CrossRefGoogle Scholar
  20. 20.
    Khetani SR, Bhatia SN (2008) Microscale culture of human liver cells for drug development. Nat Biotechnol 26:120–126CrossRefGoogle Scholar
  21. 21.
    March S, Ramanan V, Trehan K et al (2015) Micropatterned coculture of primary human hepatocytes and supportive cells for the study of hepatotropic pathogens. Nat Protoc 10:2027–2053CrossRefGoogle Scholar
  22. 22.
    Dembele L, Franetich J-F, Lorthiois A et al (2014) Persistence and activation of malaria hypnozoites in long-term primary hepatocyte cultures. Nat Med 20:307–312CrossRefGoogle Scholar
  23. 23.
    Thiberge S, Blazquez S, Baldacci P et al (2007) In vivo imaging of malaria parasites in the murine liver. Nat Protoc 2:1811–1818CrossRefGoogle Scholar
  24. 24.
    Derbyshire ER, Prudêncio M, Mota MM, Clardy J (2012) Liver-stage malaria parasites vulnerable to diverse chemical scaffolds. Proc Natl Acad Sci U S A 109:8511–8516CrossRefGoogle Scholar
  25. 25.
    Swann J, Corey V, Scherer CA et al (2016) High-throughput luciferase-based assay for the discovery of therapeutics that prevent malaria. ACS Infect Dis 2:281–293CrossRefGoogle Scholar
  26. 26.
    Brancucci NMB, Goldowitz I, Buchholz K et al (2015) An assay to probe Plasmodium falciparum growth, transmission stage formation and early gametocyte development. Nat Protoc 10:1131–1142CrossRefGoogle Scholar
  27. 27.
    Plouffe D, Brinker A, McNamara C et al (2008) From the Cover: in silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen. Proc Natl Acad Sci U S A 105:9059–9064CrossRefGoogle Scholar
  28. 28.
    Diagana TT (2015) Supporting malaria elimination with 21st century antimalarial agent drug discovery. Drug Discov Today 20:1265–1270CrossRefGoogle Scholar
  29. 29.
    Gamo F-J, Sanz LM, Vidal J et al (2010) Thousands of chemical starting points for antimalarial lead identification. Nature 465:305–310CrossRefGoogle Scholar
  30. 30.
    Vaughan AM, Mikolajczak SA, Camargo N et al (2012) A transgenic Plasmodium falciparum NF54 strain that expresses GFP–luciferase throughout the parasite life cycle. Mol Biochem Parasitol 186:143–147CrossRefGoogle Scholar
  31. 31.
    Mikolajczak SA, Vaughan AM, Kangwanrangsan N et al (2015) Plasmodium vivax liver stage development and hypnozoite persistence in human liver-chimeric mice. Cell Host Microbe 17:526–535CrossRefGoogle Scholar
  32. 32.
    Collins WE, Sullivan JS, Jeffery GM et al (2012) Mosquito infection studies with Aotus monkeys and humans infected with the Chesson strain of Plasmodiun vivax. Am J Trop Med Hyg 86:398–402CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Nobutaka Kato
    • 1
  • Sandra March
    • 1
    • 2
    • 3
    • 4
  • Sangeeta N. Bhatia
    • 1
    • 2
    • 3
    • 4
  • Matthias Marti
    • 5
    • 6
  1. 1.Broad Institute of MIT and HarvardCambridgeUSA
  2. 2.Institute for Medical Engineering and Science, Massachusetts Institute of TechnologyCambridgeUSA
  3. 3.Howard Hughes Medical InstituteCambridgeUSA
  4. 4.Koch Institute for Integrative Cancer ResearchCambridgeUSA
  5. 5.Wellcome Centre for Molecular Parasitology, University of GlasgowGlasgowUK
  6. 6.Department of Immunology and Infectious DiseasesHarvard TH Chan School of Public HealthBostonUSA

Personalised recommendations