Skip to main content

A PLA-iRoCS Pipeline for the Localization of Protein–Protein Interactions In Situ

Part of the Methods in Molecular Biology book series (MIMB,volume 1787)

Abstract

In plants as well as other organisms, protein localization alone is insufficient to provide a mechanistic link between stimulus and process regulation. This is because protein–protein interactions are central to the regulation of biological processes. However, they remain very difficult to detect in situ, with the choice of tools for the detection of protein–protein interaction in situ still in need of expansion. Here, we provide a protocol for the detection and accurate localization of protein interactions based on the combination of a whole-mount proximity ligation assay and iRoCS, a coordinate system able to standardize subtle differences between the architecture of individual Arabidopsis roots.

Key words

  • Proximity ligation assay
  • iRoCS
  • Protein complex
  • Protein–protein interactions
  • In situ
  • In planta
  • 3D imaging
  • Root apical meristem
  • Arabidopsis thaliana

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-7847-2_12
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-7847-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Uhlen M, Ponten F (2005) Antibody-based proteomics for human tissue profiling. Mol Cell Proteomics 4:384–393

    CrossRef  CAS  PubMed Central  Google Scholar 

  2. Sprinzak E, Sattath S, Margalit H (2003) How reliable are experimental protein–protein interaction data? J Mol Biol 327:919–923

    CrossRef  CAS  PubMed Central  Google Scholar 

  3. Hu CD, Chinenov Y, Kerppola TK (2002) Visualization of interactions among bZip and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell 9:789–798

    CrossRef  CAS  PubMed Central  Google Scholar 

  4. Bartel PL, Fields S (1995) Analyzing protein–protein initeractions using yeast 2-hybrid system. Oncogene Tech 254:241–263

    CrossRef  CAS  Google Scholar 

  5. Soderberg O, Gullberg M, Jarvius M, Ridderstrale K, Leuchowius KJ, Jarvius J et al (2006) Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Methods 3:995–1000

    CrossRef  PubMed Central  Google Scholar 

  6. Soderberg O, Leuchowius KJ, Gullberg M, Jarvius M, Weibrecht I, Larsson LG et al (2008) Characterizing proteins and their interactions in cells and tissues using the in situ proximity ligation assay. Methods 45:227–232

    CrossRef  PubMed Central  Google Scholar 

  7. Apelt F, Breuer D, Nikoloski Z, Stitt M, Kragler F (2015) Phytotyping(4D): a light-field imaging system for non-invasive and accurate monitoring of spatio-temporal plant growth. Plant J 82:693–706

    CrossRef  CAS  PubMed Central  Google Scholar 

  8. Fernandez R, Das P, Mirabet V, Moscardi E, Traas J, Verdeil JL et al (2010) Imaging plant growth in 4D: robust tissue reconstruction and lineaging at cell resolution. Nat Methods 7:547–U594

    CrossRef  CAS  PubMed Central  Google Scholar 

  9. Montenegro-Johnson TD, Stamm P, Strauss S, Topham AT, Tsagris M, Wood ATA et al (2015) Digital single-cell analysis of plant organ development using 3DCellAtlas. Plant Cell 27:1018–1033

    CrossRef  CAS  PubMed Central  Google Scholar 

  10. de Reuille PB, Routier-Kierzkowska AL, Kierzkowski D, Bassel GW, Schupbach T, Tauriello G et al (2015) MorphoGraphX: a platform for quantifying morphogenesis in 4D. Elife 4:05864

    Google Scholar 

  11. Schmidt T, Pasternak T, Liu K, Blein T, Aubry-Hivet D, Dovzhenko A et al (2014) The iRoCS toolbox: 3D analysis of the plant root apical meristem at cellular resolution. Plant J 77:806–814

    CrossRef  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Palme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Pasternak, T., Teale, W., Falk, T., Ruperti, B., Palme, K. (2018). A PLA-iRoCS Pipeline for the Localization of Protein–Protein Interactions In Situ. In: Wagner, B. (eds) Phenotypic Screening. Methods in Molecular Biology, vol 1787. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7847-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7847-2_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7846-5

  • Online ISBN: 978-1-4939-7847-2

  • eBook Packages: Springer Protocols