Skip to main content

Protocols for the Study of Taxanes Chemosensitivity in Prostate Cancer

  • Protocol
  • First Online:
Prostate Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1786))

Abstract

Prostate cancer is major cause of cancer-related death among men in Western countries. Locally advanced prostate cancers are treated with castration therapy, which is initially effective, but after months the disease progresses to a hormone-refractory state whose treatment is chemotherapy based on taxanes. Although taxanes improve the survival of patients with castration-resistant prostate cancers, these patients often develop chemotherapy resistance, and new therapeutic strategies are necessary. Taxanes exert their action through interaction with β-tubulin which triggers cell cycle arrest in mitosis and the subsequent induction of the intrinsic apoptotic pathway. Since taxanes are widely used for the treatment of advanced prostate cancers, we present in this chapter protocols that allow the study of the prostate cancer sensitivity as well as determine the mechanisms of resistance to these chemotherapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN. Int J Cancer 136(5):E359–E386

    Article  CAS  PubMed  Google Scholar 

  2. Behnsawy HM, Miyake H, Harada K, Fujisawa M (2013) Expression patterns of epithelial-mesenchymal transition markers in localized prostate cancer: significance in clinicopathological outcomes following radical prostatectomy. BJU Int 111:30–37

    Article  PubMed  Google Scholar 

  3. Sarkar S, Das S (2016) A review of imaging methods for prostate cancer detection. Biomed Eng Comput Biol 7(Suppl 1):1–15

    PubMed Central  PubMed  Google Scholar 

  4. Gleason DF, Mellinger GT (1974) Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J Urol 111(1):58–64

    Article  CAS  PubMed  Google Scholar 

  5. Uzgare AR, Isaacs JT (2005) Prostate cancer: potential targets of anti-proliferative and apoptotic signaling pathways. Int J Biochem Cell Biol 37(4):707–714

    Article  CAS  PubMed  Google Scholar 

  6. Shen MM, Abate-Shen C (2010) Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev 24(18):1967–2000

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Pound CR, Partin AW, Epstein JI, Walsh PC (1997) Prostate-specific antigen after anatomic radical retropubic prostatectomy. Patterns of recurrence and cancer control. Urol Clin North Am 24(2):395–406

    Article  CAS  PubMed  Google Scholar 

  8. Nilsson S, Norlen BJ, Widmarks A (2004) A systematic overview of radiation therapy effects in prostate cancer. Acta Oncol 43(4):316–381

    Article  PubMed  Google Scholar 

  9. Bruckheimer EM, Kyprianou N (2000) Apoptosis in prostate carcinogenesis. A growth regulator and a therapeutic target. Cell Tissue Res 301(1):153–162

    Article  CAS  PubMed  Google Scholar 

  10. Abate-Shen C, Shen MM (2000) Molecular genetics of prostate cancer. Genes Dev 14(19):2410–2434

    Article  CAS  PubMed  Google Scholar 

  11. Chi K, Hotte SJ, Joshua AM, North S, Wyatt AW, Collins LL, Saad F (2015) Treatment of mCRPC in the AR-axis-targeted therapy-resistant state. Ann Oncol 26:2044–2056

    Article  CAS  PubMed  Google Scholar 

  12. Chi KN, Bjartell A, Dearnaley D, Saad F, Schröder FH, Sterngerg C, Tombal B, Visakorpi T (2009) Castration-resistant prostate cancer: from new pathophysiology to new treatment targets. Eur Urol 56(4):594–605

    Article  CAS  PubMed  Google Scholar 

  13. Bhalla KN (2003) Microtubule-targeted anticancer agents and apoptosis. Oncogene 22(56):9075–9086

    Article  CAS  PubMed  Google Scholar 

  14. Gascoigne KE, Taylor SS (2008) Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell 14(2):111–122

    Article  CAS  PubMed  Google Scholar 

  15. van Delft MF, Huang DC (2006) How the Bcl-2 family of proteins interact to regulate apoptosis. Cell Res 16(2):203–213

    Article  PubMed  CAS  Google Scholar 

  16. Musacchio A, Salmon ED (2007) The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 8(5):379–393

    Article  PubMed  CAS  Google Scholar 

  17. Ciliberto A, Shah JV (2009) A quantitative systems view of the spindle assembly checkpoint. EMBO J 28(15):2162–2173

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Matsuyoshi S, Shimada K, Nakamura M, Ishida E, Konishi N (2006) Bcl-2 phosphorylation has pathological significance in human breast cancer. Pathobiology 73(4):205–212

    Article  PubMed  CAS  Google Scholar 

  19. Basu A, DuBois G, Haldar S (2006) Posttranslational modifications of Bcl2 family members–a potential therapeutic target for human malignancy. Front Biosci 11(1):1508–1521

    Article  PubMed  CAS  Google Scholar 

  20. Zhu Y, Zhou Y, Shi J (2014) Post-slippage multinucleation renders cytotoxic variation in anti-mitotic drugs that target microtubules or mitotic spindle. Cell Cycle 13:1756–1764

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Brito DA, Rieder CL (2006) Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint. Curr Biol 16(12):1194–1200

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Rieder CL, Maiato H (2004) Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint. Dev Cell 7(5):637–651

    Article  CAS  PubMed  Google Scholar 

  23. Gascoigne KE, Taylor SS (2009) How do anti-mitotic drugs kill cancer cells? J Cell Sci 122(Pt15):2579–2585

    Article  CAS  PubMed  Google Scholar 

  24. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wideranging implications in tissue kinetics. Br J Cancer 26(4):239–257

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Kerr JF, Winterford CM, Harmon BV (1994) Apoptosis. Its significance in cancer and cancer therapy. Cancer 73(8):2013–2026

    Article  CAS  PubMed  Google Scholar 

  26. Um HD (2015) Bcl-2 family proteins as regulators of cancer cell invasion and metastasis: a review focusing on mitochondrial respiration and reactive oxygen species. Oncotarget 7(5):5193–5203

    PubMed Central  Google Scholar 

  27. Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR (2010) The BCL-2 family reunion. Mol Cell 37(3):299–310

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Kollek M, Müller A, Egle A, Erlacher M (2016) Bcl-2 proteins in development, health and disease of hematopoietic system. FEBS J 283(15):2779–2810

    Article  CAS  PubMed  Google Scholar 

  29. Adams JM, Cory S (2007) The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26(9):1324–1337

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Weaver BA, Cleveland DW (2005) Decoding the links between mitotis, cancer and chemotherapy. The mitotic checkpoint, adaptation and cell death. Cancer Cell 8(1):7–12

    Article  CAS  PubMed  Google Scholar 

  31. Sudo T, Nitta M, Saya H, Ueno NT (2004) Dependence of paclitaxel sensitivity on a functional spindle assembly checkpoint. Cancer Res 64(7):2502–2508

    Article  CAS  PubMed  Google Scholar 

  32. Castilla C, Flores ML, Medina R, Pérez-Valderrama B, Romero F, Tortolero M, Japón MA, Sáez C (2014) Prostate cáncer cell response to paclitaxel is affected by abnormally expressed securin PTTG1. Mol Cancer Ther 13(10):2372–2383

    Article  CAS  PubMed  Google Scholar 

  33. Flores ML, Castilla C, Gasca J, Medina R, Pérez-Valderrama B, Romero F, Japón MA, Sáez C (2016) Loss of PKCδ induces prostate cancer resistance to paclitaxel through activation of Wnt/β-catenin pathway and Mcl-1 accumulation. Mol Cancer Ther 15(7):1713–1725

    Article  CAS  PubMed  Google Scholar 

  34. Flores ML, Castilla C, Ávila R, Ruiz-Borrego M, Sáez C, Japón MA (2012) Paclitaxel sensitivity of breast cáncer cells requires efficient mitotic arrest and disruption of Bcl-xL/Bak interaction. Breast Cancer Res Treat 133(3):917–928

    Article  CAS  PubMed  Google Scholar 

  35. Gasca J, Flores ML, Giráldez S, Ruiz-Borrego M, Tortolero M, Romero F, Japón MA, Sáez C (2016) Loss of FBXW7 and accumulation of MCL1 and PLK1 promote paclitaxel resistance in breast cancer. Oncotarget 7:52751–52765

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ho CH, Hsu JL, Liu SP, Hsu LC, Chang WL, Chao CC, Guh JH (2015) Repurposing of phentolamine as a potential anticancer agent against human castration-resistant prostate cancer: a central role on microtubule stabilization and mitochondrial apoptosis pathway. Prostate 75:1454–1466

    Article  CAS  PubMed  Google Scholar 

  37. Hu Q, Sun W, Wang C, Gu Z (2016) Recent advances of cocktail chemotherapy by combination drug delivery systems. Adv Drug Deliv Rev 98:19–34

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants from the Instituto de Salud Carlos III (FIS PI13/2282; FIS PI17/1240), and Consejería de Innovación, Ciencia y Empresa (P10-CTS-6243), Junta de Andalucía. CS was supported by a contract from Nicolás Monardes Program, Consejería de Salud, Junta de Andalucía.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Sáez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Luz Flores, M., Sáez, C. (2018). Protocols for the Study of Taxanes Chemosensitivity in Prostate Cancer. In: Culig, Z. (eds) Prostate Cancer. Methods in Molecular Biology, vol 1786. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7845-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7845-8_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7843-4

  • Online ISBN: 978-1-4939-7845-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics