Skip to main content

Bioinformatics Tools for the Prediction of T-Cell Epitopes

  • Protocol
  • First Online:
Epitope Mapping Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1785))

Abstract

T-cell responses are activated by specific peptides, called epitopes, presented on the cell surface by MHC molecules. Binding of peptides to the MHC is the most selective step in T-cell antigen presentation and therefore an essential factor in the selection of potential epitopes. Several in-vitro methods have been developed for the determination of peptide binding to MHC molecules, but these are all costly and time-consuming. In consequence, significant effort has been dedicated to the development of in-silico methods to model this event. Here, we describe two such tools, NetMHCcons and NetMHCIIpan, for the prediction of peptide binding to MHC class I and class II molecules, respectively, involved in the activation pathways of CD8+ and CD4+ T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Germain RN (1994) MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation. Cell 76:287–299

    Article  CAS  PubMed  Google Scholar 

  2. Rudolph MG, Stanfield RL, Wilson IA (2006) How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol 24:419–466. https://doi.org/10.1146/annurev.immunol.23.021704.115658

    Article  CAS  PubMed  Google Scholar 

  3. Rudensky AY, Preston-Hurlburt P, Hong SC et al (1991) Sequence analysis of peptides bound to MHC class II molecules. Nature 353:622–627. https://doi.org/10.1038/353622a0

    Article  CAS  PubMed  Google Scholar 

  4. Lundegaard C, Hoof I, Lund O, Nielsen M (2010) State of the art and challenges in sequence based T-cell epitope prediction. Immunome Res 6:S3. https://doi.org/10.1186/1745-7580-6-S2-S3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Larsen M, Lundegaard C, Lamberth K (2005) An integrative approach to CTL epitope prediction: a combined algorithm integrating MHC class I binding, TAP transport efficiency, and proteasomal cleavage predictions. Eur J Immunol 35:2295–2303

    Article  CAS  PubMed  Google Scholar 

  6. Assarsson E, Sidney J, Oseroff C et al (2007) A quantitative analysis of the variables affecting the repertoire of T cell specificities recognized after vaccinia virus infection. J Immunol 178:7890–7901

    Article  CAS  PubMed  Google Scholar 

  7. Nielsen M, Lundegaard C, Lund O, Keşmir C (2005) The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage. Immunogenetics 57:33–41. https://doi.org/10.1007/s00251-005-0781-7

    Article  CAS  PubMed  Google Scholar 

  8. Harndahl M, Rasmussen M, Roder G, Buus S (2011) Real-time, high-throughput measurements of peptide-MHC-I dissociation using a scintillation proximity assay. J Immunol Methods 374:5–12. https://doi.org/10.1016/j.jim.2010.10.012

    Article  CAS  PubMed  Google Scholar 

  9. Harndahl M, Rasmussen M, Roder G et al (2012) Peptide-MHC class I stability is a better predictor than peptide affinity of CTL immunogenicity. Eur J Immunol 42:1405–1416. https://doi.org/10.1002/eji.201141774

    Article  CAS  PubMed  Google Scholar 

  10. Juncker AS, Larsen MV, Weinhold N et al (2009) Systematic characterisation of cellular localisation and expression profiles of proteins containing MHC ligands. PLoS One 4:e7448. https://doi.org/10.1371/journal.pone.0007448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hoof I, van Baarle D, Hildebrand WH, Keşmir C (2012) Proteome sampling by the HLA class I antigen processing pathway. PLoS Comput Biol 8:e1002517. https://doi.org/10.1371/journal.pcbi.1002517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Frankild S, de Boer RJ, Lund O et al (2008) Amino acid similarity accounts for T cell cross-reactivity and for “holes” in the T cell repertoire. PLoS One 3:e1831. https://doi.org/10.1371/journal.pone.0001831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yewdell JW, Bennink JR (1999) Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annu Rev Immunol 17:51–88. https://doi.org/10.1146/annurev.immunol.17.1.51

    Article  CAS  PubMed  Google Scholar 

  14. Tenzer S, Peters B, Bulik S et al (2005) Modeling the MHC class I pathway by combining predictions of proteasomal cleavage, TAP transport and MHC class I binding. Cell Mol Life Sci CMLS 62:1025–1037. https://doi.org/10.1007/s00018-005-4528-2

    Article  CAS  PubMed  Google Scholar 

  15. Stranzl T, Larsen MV, Lundegaard C, Nielsen M (2010) NetCTLpan: pan-specific MHC class I pathway epitope predictions. Immunogenetics 62:357–368. https://doi.org/10.1007/s00251-010-0441-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Doytchinova IA, Guan P, Flower DR (2006) EpiJen: a server for multistep T cell epitope prediction. BMC Bioinformatics 7:131. https://doi.org/10.1186/1471-2105-7-131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Karosiene E, Lundegaard C, Lund O, Nielsen M (2012) NetMHCcons: a consensus method for the major histocompatibility complex class I predictions. Immunogenetics 64:177–186. https://doi.org/10.1007/s00251-011-0579-8

    Article  CAS  PubMed  Google Scholar 

  18. Lundegaard C, Lamberth K, Harndahl M et al (2008) NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11. Nucleic Acids Res 36:W509–W512. https://doi.org/10.1093/nar/gkn202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hoof I, Peters B, Sidney J et al (2009) NetMHCpan, a method for MHC class I binding prediction beyond humans. Immunogenetics 61:1–13. https://doi.org/10.1007/s00251-008-0341-z

    Article  CAS  PubMed  Google Scholar 

  20. Zhang H, Lund O, Nielsen M (2009) The PickPocket method for predicting binding specificities for receptors based on receptor pocket similarities: application to MHC-peptide binding. Bioinforma Oxf Engl 25:1293–1299. https://doi.org/10.1093/bioinformatics/btp137

    Article  CAS  Google Scholar 

  21. Karosiene E, Rasmussen M, Blicher T et al (2013) NetMHCIIpan-3.0, a common pan-specific MHC class II prediction method including all three human MHC class II isotypes, HLA-DR, HLA-DP and HLA-DQ. Immunogenetics 65:711–724. https://doi.org/10.1007/s00251-013-0720-y

    Article  CAS  PubMed  Google Scholar 

  22. Andreatta M, Karosiene E, Rasmussen M et al (2015) Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification. Immunogenetics 67(11-12):641–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nielsen M, Lund O (2009) NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction. BMC Bioinformatics 10:296

    Article  PubMed  PubMed Central  Google Scholar 

  24. Andreatta M, Schafer-Nielsen C, Lund O et al (2011) NNAlign: a web-based prediction method allowing non-expert end-user discovery of sequence motifs in quantitative peptide data. PLoS One 6:e26781. https://doi.org/10.1371/journal.pone.0026781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Godkin AJ, Smith KJ, Willis A et al (2001) Naturally processed HLA class II peptides reveal highly conserved immunogenic flanking region sequence preferences that reflect antigen processing rather than peptide-MHC interactions. J Immunol 166:6720–6727

    Article  CAS  PubMed  Google Scholar 

  26. Carson RT, Vignali KM, Woodland DL, Vignali DA (1997) T cell receptor recognition of MHC class II-bound peptide flanking residues enhances immunogenicity and results in altered TCR V region usage. Immunity 7:387–399

    Article  CAS  PubMed  Google Scholar 

  27. Moutaftsi M, Peters B, Pasquetto V et al (2006) A consensus epitope prediction approach identifies the breadth of murine T(CD8+)-cell responses to vaccinia virus. Nat Biotechnol 24:817–819. https://doi.org/10.1038/nbt1215

    Article  CAS  PubMed  Google Scholar 

  28. Rao X, Costa AI, van Baarle D, Kesmir C (2009) A comparative study of HLA binding affinity and ligand diversity: implications for generating immunodominant CD8+ T cell responses. J Immunol 182:1526–1532

    Article  CAS  PubMed  Google Scholar 

  29. Paul S, Weiskopf D, Angelo MA et al (2013) HLA class I alleles are associated with peptide-binding repertoires of different size, affinity, and immunogenicity. J Immunol 191:5831–5839. https://doi.org/10.4049/jimmunol.1302101

    Article  CAS  PubMed  Google Scholar 

  30. Erup Larsen M, Kloverpris H, Stryhn A et al (2011) HLArestrictor--a tool for patient-specific predictions of HLA restriction elements and optimal epitopes within peptides. Immunogenetics 63:43–55. https://doi.org/10.1007/s00251-010-0493-5

    Article  CAS  PubMed  Google Scholar 

  31. Braendstrup P, Mortensen BK, Justesen S et al (2014) Identification and HLA-tetramer-validation of human CD4+ and CD8+ T cell responses against HCMV proteins IE1 and IE2. PLoS One 9:e94892. https://doi.org/10.1371/journal.pone.0094892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Andreatta M, Nielsen M (2012) Characterizing the binding motifs of 11 common human HLA-DP and HLA-DQ molecules using NNAlign. Immunology 136:306–311. https://doi.org/10.1111/j.1365-2567.2012.03579.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vita R, Overton JA, Greenbaum JA et al (2015) The immune epitope database (IEDB) 3.0. Nucleic Acids Res 43:D405–D412. https://doi.org/10.1093/nar/gku938

    Article  CAS  PubMed  Google Scholar 

  34. Lundegaard C, Lund O, Nielsen M (2008) Accurate approximation method for prediction of class I MHC affinities for peptides of length 8, 10 and 11 using prediction tools trained on 9mers. Bioinformatics 24:1397–1398. https://doi.org/10.1093/bioinformatics/btn128

    Article  CAS  PubMed  Google Scholar 

  35. Trolle T, Nielsen M (2014) NetTepi: an integrated method for the prediction of T cell epitopes. Immunogenetics 66:449–456. https://doi.org/10.1007/s00251-014-0779-0

    Article  CAS  PubMed  Google Scholar 

  36. Jørgensen KW, Rasmussen M, Buus S, Nielsen M (2014) NetMHCstab - predicting stability of peptide-MHC-I complexes; impacts for cytotoxic T lymphocyte epitope discovery. Immunology 141:18–26. https://doi.org/10.1111/imm.12160

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part with Federal funds from the National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under Contract No. HHSN272201200010C. This work was partially funded by the Agencia Nacional de Promoción Científica y Tecnológica, Argentina (PICT-2012-0115). MN is a researcher at the Argentinean national research council (CONICET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morten Nielsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Andreatta, M., Nielsen, M. (2018). Bioinformatics Tools for the Prediction of T-Cell Epitopes. In: Rockberg, J., Nilvebrant, J. (eds) Epitope Mapping Protocols. Methods in Molecular Biology, vol 1785. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7841-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7841-0_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7839-7

  • Online ISBN: 978-1-4939-7841-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics